• Title/Summary/Keyword: the automorphism group

Search Result 90, Processing Time 0.029 seconds

Some Properties of the Closure Operator of a Pi-space

  • Mao, Hua;Liu, Sanyang
    • Kyungpook Mathematical Journal
    • /
    • v.51 no.3
    • /
    • pp.311-322
    • /
    • 2011
  • In this paper, we generalize the definition of a closure operator for a finite matroid to a pi-space and obtain the corresponding closure axioms. Then we discuss some properties of pi-spaces using the closure axioms and prove the non-existence for the dual of a pi-space. We also present some results on the automorphism group of a pi-space.

CHARACTERIZATION OF THE HILBERT BALL BY ITS AUTOMORPHISMS

  • Kim, Kang-Tae;Ma, Daowei
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.3
    • /
    • pp.503-516
    • /
    • 2003
  • We show in this paper that every domain in a separable Hilbert space, say H, which has a $C^2$ smooth strongly pseudoconvex boundary point at which an automorphism orbit accumulates is biholomorphic to the unit ball of H. This is the complete generalization of the Wong-Rosay theorem to a separable Hilbert space of infinite dimension. Our work here is an improvement from the preceding work of Kim/Krantz [10] and subsequent improvement of Byun/Gaussier/Kim [3] in the infinite dimensions.

NOTES ON ${\overline{WN_{n,0,0_{[2]}}}$ I

  • CHOI, SEUL HEE
    • Honam Mathematical Journal
    • /
    • v.27 no.4
    • /
    • pp.571-581
    • /
    • 2005
  • The Weyl-type non-associative algebra ${\overline{WN_{g_n,m,s_r}}$ and its subalgebra ${\overline{WN_{n,m,s_r}}$ are defined and studied in the papers [8], [9], [10], [12]. We will prove that the Weyl-type non-associative algebra ${\overline{WN_{n,0,0_{[2]}}}$ and its corresponding semi-Lie algebra are simple. We find the non-associative algebra automorphism group $Aut_{non}({\overline{WN_{1,0,0_{[2]}}})$.

  • PDF

PSEUDO-CONJUGATIONS

  • Ko, Ki-Hyoung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.247-251
    • /
    • 1988
  • This note gives a combinatorial treatment to the problem finding a generating set among conjugating automorphisms of a free group and to the method deciding when a conjugating endomorphism of a free group is an automorphism. Our group of pseudo-conjugating automorphisms can be thought of as a generalization of the artin's braid group.

  • PDF

COMMUTING AUTOMORPHISM OF p-GROUPS WITH CYCLIC MAXIMAL SUBGROUPS

  • Vosooghpour, Fatemeh;Kargarian, Zeinab;Akhavan-Malayeri, Mehri
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.4
    • /
    • pp.643-647
    • /
    • 2013
  • Let G be a group and let $p$ be a prime number. If the set $\mathcal{A}(G)$ of all commuting automorphisms of G forms a subgroup of Aut(G), then G is called $\mathcal{A}(G)$-group. In this paper we show that any $p$-group with cyclic maximal subgroup is an $\mathcal{A}(G)$-group. We also find the structure of the group $\mathcal{A}(G)$ and we show that $\mathcal{A}(G)=Aut_c(G)$. Moreover, we prove that for any prime $p$ and all integers $n{\geq}3$, there exists a non-abelian $\mathcal{A}(G)$-group of order $p^n$ in which $\mathcal{A}(G)=Aut_c(G)$. If $p$ > 2, then $\mathcal{A}(G)={\cong}\mathbb{Z}_p{\times}\mathbb{Z}_{p^{n-2}}$ and if $p=2$, then $\mathcal{A}(G)={\cong}\mathbb{Z}_2{\times}\mathbb{Z}_2{\times}\mathbb{Z}_{2^{n-3}}$ or $\mathbb{Z}_2{\times}\mathbb{Z}_2$.

LAPLACIAN SPECTRA OF GRAPH BUNDLES

  • Kim, Ju-Young
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.4
    • /
    • pp.1159-1174
    • /
    • 1996
  • The spectrum of the Laplacian matrix of a graph gives an information of the structure of the graph. For example, the product of non-zero eigenvalues of the characteristic polynomial of the Laplacian matrix of a graph with n vertices is n times of the number of spanning trees of that graph. The characteristic polynomial of the Laplacian matrix of a graph tells us the number of spanning trees and the connectivity of given graph. in this paper, we compute the characteristic polynomial of the Laplacian matrix of a graph bundle when its voltage lie in an abelian subgroup of the full automorphism group of the fibre; in particular, the automorphism group of the fibre is abelian. Also we study a relation between the characteristic polynomial of the Laplacian matrix of a graph G and that of the Laplacian matrix of a graph bundle over G. Some applications are also discussed.

  • PDF

CLASSIFICATION OF ORDER SIXTEEN NON-SYMPLECTIC AUTOMORPHISMS ON K3 SURFACES

  • Tabbaa, Dima Al;Sarti, Alessandra;Taki, Shingo
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1237-1260
    • /
    • 2016
  • In the paper we classify complex K3 surfaces with non-symplectic automorphism of order 16 in full generality. We show that the fixed locus contains only rational curves and points and we completely classify the seven possible configurations. If the Picard group has rank 6, there are two possibilities and if its rank is 14, there are five possibilities. In particular if the action of the automorphism is trivial on the Picard group, then we show that its rank is six.