
Commun. Korean Math. Soc. 28 (2013), No. 4, pp. 643–647
http://dx.doi.org/10.4134/CKMS.2013.28.4.643

COMMUTING AUTOMORPHISM OF p-GROUPS WITH

CYCLIC MAXIMAL SUBGROUPS

Fatemeh Vosooghpour, Zeinab Kargarian, and Mehri Akhavan-Malayeri

Abstract. Let G be a group and let p be a prime number. If the set
A(G) of all commuting automorphisms of G forms a subgroup of Aut(G),
then G is called A(G)-group. In this paper we show that any p-group with
cyclic maximal subgroup is an A(G)-group. We also find the structure
of the group A(G) and we show that A(G) = Autc(G). Moreover, we
prove that for any prime p and all integers n ≥ 3, there exists a non-
abelian A(G)-group of order pn in which A(G) = Autc(G). If p > 2,
then A(G) ∼= Zp × Z

pn−2 and if p = 2, then A(G) ∼= Z2 × Z2 × Z2n−3 or

Z2 × Z2.

1. Introduction

Let G be a group. An automorphism α of G is called a commuting automor-

phism if gα(g) = α(g)g for all g ∈ G. The set of all commuting automorphism
of the group G is denoted by A(G).

It is well known that A(G) does not necessarily form a subgroup of the
Aut(G), but it has a number of interesting properties (see [1]). Also, if G

satisfies some special conditions, then A(G) is a group. It is clear that A(G)
contains the group Autc(G) of central automorphisms of G. The converse
inclusion does not hold in general. A group G is called A(G)-group if the set
A(G) forms a subgroup of Aut(G). For example, A(G) = 1 whenever G has
no nontrivial abelian normal subgroups (see [4]) or G = G′ (see [1]).

Also, Deaconescu, Silberberg and Walls [1, Theorem 1.1] proved the follow-
ing results:

Theorem 1.1. Let G be a group satisfying maximal condition on subgroups.

If α ∈ A(G), then [G,α] ⊆ Z∞(G). In particular for such a group, A(G) = 1
if and only if Autc(G) = 1.

As a direct consequence of Theorem 1.1 one obtains:

Corollary 1.2. If G satisfies maximal condition on subgroups and Z2(G) =
Z(G), then A(G) = Autc(G).
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Let R2(G) denote the set of all 2-Engel elements of G. The next result gives
another condition which implies the equality A(G) = Autc(G).

Lemma 1.3 ([2, Lemma 2.2(i)]). If R2(G) = Z(G), then A(G) = Autc(G).

We will see later, the converse of Corollary 1.2 and Lemma 1.3 is false.
In [5] Deaconescu, Silberberg and Walls asked the following questions about
the set A(G):

(1) Is it true that the set A(G) is always a subgroup of Aut(G)?
(2) What conditions on G imply the equality A(G) = Autc(G)?

Regarding to these questions, in this paper we will compute the commuting
automorphism of finite p-groups of order pn which have a cyclic maximal
subgroup. We show that any p-group with cyclic maximal subgroup is an
A(G)-group. We also find the structure of the group A(G) and we show that
A(G) = Autc(G).

In [7] we proved that the minimum order of a non-A(G) p-group is p5. We
also found the smallest group order of a non-A(G) p-group. Furthermore we
proved that for any prime p and for all integers n ≥ 5, there exists a non-A(G)
p-group of order pn.

In this paper we prove that for any prime p and all integers n ≥ 3, there
exists a non-abelian A(G)-group of order pn in which A(G) = Autc(G). If
p > 2, then A(G) ∼= Zp ×Zpn−2 and if p = 2, then A(G) ∼= Z2 × Z2 × Z2n−3 or
Z2 × Z2.

We will use the following classification theorem to obtain information about
the commuting automorphisms of these groups (see [6, 5.3.4]).

Theorem 1.4. A group of order pn has a cyclic maximal subgroup if and only

if it is of one of the following types:

(i) a cyclic group of order pn;
(ii) the direct product of a cyclic group of order pn−1 and one of order p;

(iii) 〈x, a | xp = 1 = ap
n−1

, ax = a1+pn−2

〉, n ≥ 3;
(iv) the dihedral group D2n , n ≥ 3;
(v) the generalized quaternion group Q2n, n ≥ 3;

(vi) the semidihedral group 〈x, a | x2 = 1 = a2
n−1

, ax = a2
n−2

−1〉, n ≥ 3.

The main results of this paper are as follows:

Theorem 1.5. Let G be a p-group of order pn which has a cyclic maximal

subgroup. Then G is an A(G)-group. In particular, A(G) = Autc(G).

Next we obtain the structure of commuting automorphisms of non-abelian
p-groups with cyclic maximal subgroup.

Theorem 1.6. Let G be a non-abelian p-group of order pn with cyclic maximal

subgroup. If p is an odd prime, then A(G) ∼= Zp × Zpn−2 . If p = 2, then

A(G) ∼= Z2 × Z2 × Z2n−3 or A(G) ∼= Z2 × Z2.
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In particular, we have the following consequences of the above theorems.

Corollary 1.7. For a given prime p and all integers n ≥ 3, there exists a

non-abelian A(G)-group of order pn in which A(G) = Autc(G) is an abelian

p-group.

Corollary 1.8. For a given prime p, the minimum order of a non-abelian

A(G) p-group is p3.

Corollary 1.9. Let G be a group of order pn. If G has a unique subgroup of

order p, then G is an A(G)-group and A(G) = Autc(G).

2. Proofs of the main results

In this paper all unexplained notation is standard and follows that of [6].
First we establish the following easy but basic result, required in the proof of
the main results.

Lemma 2.1. Let G = 〈x, a〉 be a non-abelian group and 〈a〉 be a normal

cyclic maximal subgroup of G. Then CG(a) = 〈a〉, CG(x) = 〈x〉Z(G) and

CG(xa) = 〈xa〉Z(G).

Proof. Since 〈a〉 is a normal maximal subgroup of G, we have G = 〈a〉〈x〉.
Thus every element of G can be expressed in the form aixj for some integers
i, j. Let g = aixj ∈ CG(a), then [xj , a] = 1. It follows that xj ∈ Z(G). Since
G is non-abelian and 〈a〉 is a maximal subgroup of G, we have Z(G) < 〈a〉.
Hence CG(a) = 〈a〉. Similarly, CG(x) = 〈x〉Z(G).

To complete the proof it is enough to observe that G = 〈a〉〈xa〉. That is,
every element of G can be expressed in the form ai(xa)j for some integers i, j.
Now, for any g = ai(xa)j ∈ CG(xa), we have [ai, x] = 1 and hence ai ∈ Z(G).
This completes the proof. �

The relationship between the commuting automorphisms and central auto-
morphisms for a p-group with a cyclic maximal subgroup is given in Theo-
rem 1.5. Now we prove this result.

Proof of Theorem 1.5. If G is abelian, then A(G) = Autc(G) = Aut(G). Let
G be a non-abelian p-group. First suppose G is of type (iii) in Theorem 1.4,
that is,

G = 〈x, a | xp = 1 = ap
n−1

, ax = a1+pn−2

〉, n ≥ 3.

Since 〈a〉 is a normal maximal subgroup of G, by Lemma 2.1, we have CG(a) =
〈a〉 and CG(x) = 〈x〉Z(G). Now consider α ∈ A(G). There exist integers i, j
and s such that α(x) = xizs and α(a) = aj where z = ap is a generator of
Z(G), 1 ≤ i < p, 0 ≤ s < pn−2 and 1 ≤ j < pn−1. Since α is an automorphism,

we get (j, p) = 1 and pn−3 | s. Now it follows from the relation [a, x] = ap
n−2

that [α(a), α(x)] = α(a)p
n−2

and so i = 1. Also, the equality [α(xa), xa] = 1
shows that p | j − 1. Therefore, α(a) = azk and α(x) = xzs for some integers
0 ≤ s < pn−2 and 0 ≤ k < pn−2 where pn−3 | s. This shows that α ∈ Autc(G).
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In the cases (iv)-(vi) we have G = 〈x, a〉 where Z(G) = 〈a2
n−2

〉 and x2, (xa)2

∈ Z(G). For α ∈ A(G), by Lemma 2.1, we have α(xa) = xazk and α(x) = xzs

for some integers 0 ≤ k, s < 2, where z = a2
n−2

. So α(a) = azl and α(x) = xzs

where 0 ≤ l, s < 2. This shows that α ∈ Autc(G) and it has order 2. �

Proof of Theorem 1.6. First, let

G = 〈x, a | xp = 1 = ap
n−1

, ax = a1+pn−2

〉, n ≥ 3.

Then, as we have shown in Theorem 1.5, for fixed α ∈ A(G), we have α(a) =
azr and α(x) = xzs for some integers 0 ≤ r, s < pn−2 where pn−3 | s. Clearly,
A(G) is abelian and by considering the possible choices for r and s, we get
|A(G)| = pn−1. Since z = ap and α(a) = azr, we obtain α(z) = zrp+1. Hence,

αm(a) = azr
∑m−1

k=0 (rp+1)k and αm(x) = xzs
∑m−1

k=0 (rp+1)k ,

by a simple induction on m. Thus,

αm(a) = azr
1−(rp+1)m

−rp and αm(x) = xzs
1−(rp+1)m

−rp .

Now assume p is an odd prime and put r = 1. We may apply Binomial Theorem
to produce the following congruence relations:

(p+ 1)p
k−1

≡ 1 mod pk,

(p+ 1)p
k−2

≡ 1 + pk−1 mod pk

for k > 1. This shows that A(G) has an element of order pn−2. So A(G) is
a cyclic group of order pn−1 or the direct product of a cyclic group of order
pn−2 and one of order p, according to Theorem 1.4. Note that G is nilpotent
of class 2 and so Inn(G) ≤ Autc(G) = A(G). Therefore, A(G) has a subgroup
isomorphic to Zp × Zp. Hence A(G) ∼= Zp × Zpn−2 .

Now suppose p = 2. We may assume n ≥ 4 and define α, β, γ ∈ A(G) as
follows:

α :

{

a 7→ az

x 7→ x
, β :

{

a 7→ az2
n−3

−1

x 7→ xz2
n−3 , γ :

{

a 7→ az2
n−2

−1

x 7→ x

Clearly, β and γ are of order 2 and by the following congruence relations:

(2 + 1)2
k−2

≡ 1 mod 2k,

(2 + 1)2
k−3

≡ 1 + 2k−1 mod 2k

for k ≥ 4, we have |α| = 2n−3. An easy direct argument shows that A(G) =
〈α〉 × 〈β〉 × 〈γ〉 and hence A(G) ∼= Z2 × Z2 × Z2n−3 .

In the cases (iv)-(vi), as we see in the proof of Theorem 1.5, α(x) = xzs

and α(a) = azl for some integers 0 ≤ s, l ≤ 1. Thus |A(G)| = 22 and A(G) ∼=
Z2 × Z2. �

Remark 2.2. In [5], we have computed A(G) for any non-abelian group of
order p3, where p is an odd prime. Now let G be a non-abelian group of
order 23. It is well known that G ∼= D8 or G ∼= Q8. Theorem 1.5 implies
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Autc(G) = A(G) ∼= Z2 × Z2. Hence we identify the structure of A(G) for any
group of order p3, where p is prime.

From our results, Corollary 1.7 and Corollary 1.8 are obvious.

Proof of Corollary 1.9. By Theorem 5.3.6 of [6], any group G satisfying the
hypotheses of Corollary 1.9 is cyclic or a generalized quaternion group. Hence
G is an A(G)-group and A(G) = Autc(G) by Theorem 1.5. �

Finally, let

G = 〈x, a | xp = 1 = ap
n−1

, ax = a1+pn−2

〉, n ≥ 3.

Then according to Theorem 1.5, A(G) = Autc(G). But since G is a nilpo-
tent group of class 2, Z2(G) 6= Z(G) 6= R2(G). Therefore the converse of
Corollary 1.2 and Lemma 1.3 do not hold in general.
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