DOI QR코드

DOI QR Code

CHARACTERIZATION OF THE HILBERT BALL BY ITS AUTOMORPHISMS

  • Kim, Kang-Tae (Department of Mathematics Pohang University of Science and Technology) ;
  • Ma, Daowei (Department of Mathematics Wichita State University)
  • Published : 2003.05.06

Abstract

We show in this paper that every domain in a separable Hilbert space, say H, which has a $C^2$ smooth strongly pseudoconvex boundary point at which an automorphism orbit accumulates is biholomorphic to the unit ball of H. This is the complete generalization of the Wong-Rosay theorem to a separable Hilbert space of infinite dimension. Our work here is an improvement from the preceding work of Kim/Krantz [10] and subsequent improvement of Byun/Gaussier/Kim [3] in the infinite dimensions.

Keywords

References

  1. E. Bedford and S. Pinchuk, Domains in $\mathbb{C}^{n+1}$ with noncompact automorphism group, J. Geom. Anal. 1 (1992), 165–191 https://doi.org/10.1007/BF02921302
  2. F. Berteloot, Characterization of models in $\mathbb{C}^2$ by their automorphism groups, Internat. J. Math. 5 (1994), 619–634 https://doi.org/10.1142/S0129167X94000322
  3. J. Byun, H. Gaussier and K. Kim, Weak-type normal families of holomorphic mappings in Banach spaces and Characterization of the Hilbert ball by its auto-morphism group, J. Geom. Anal. 12 (2002), 581–599 https://doi.org/10.1007/BF02930654
  4. S. Dineen, Complex analysis on infinite dimensional spaces, Springer Monograph Ser., 1999
  5. A. Efimov, A generalization of the Wong-Rosay theorem for the unbounded case, Sb. Math. 186 (1995), 967–976 https://doi.org/10.1070/SM1995v186n07ABEH000052
  6. S. Frankel, Complex geometry with convex domains that cover varieties, Acta Math. 163 (1989), 109–149 https://doi.org/10.1007/BF02392734
  7. H. Gaussier, Tautness and complete hyperbolicity of domains in $\mathbb{C}^n$, Proc. Amer. Math. Soc. 127 (1999), 105–116 https://doi.org/10.1090/S0002-9939-99-04492-5
  8. H. Gaussier, K. T. Kim and S. G. Krantz, A note on the Wong-Rosay theorem in complex manifolds, Complex Variables 47 (2002), 761–768 https://doi.org/10.1080/02781070290032225
  9. K. T. Kim, Domains in $\mathbb{C}^n$ with a piecewise Levi flat boundary which possess a noncompact automorphism group, Math. Ann. 292 (1992), 575–586 https://doi.org/10.1007/BF01444637
  10. K. T. Kim and S. G. Krantz, Characterization of the Hilbert ball by its automor-phism group, Trans. Amer. Math. 354 (2002), 2797–2838 https://doi.org/10.1090/S0002-9947-02-02895-7
  11. K. T. Kim, S. G. Krantz and A. F. Spiro, Analytic polyhedra in $\mathbb{C}^n$ with a non-compact automorphism group, preprint
  12. K. T. Kim and A. Pagano, Normal analytic polyhedra in $\mathbb{C}^n$ with a non-compact automorphism group, J. Geom. Anal. 11 (2001), 283–293. https://doi.org/10.1007/BF02921967
  13. D. Ma and S. J. Kan, On rigidity of Grauert tubes over locally symmetric spaces, J. Reine Angew. Math. 524 (2000), 205–225. https://doi.org/10.1515/crll.2000.058,18/07/2000
  14. J. Mujica, Complex analysis in Banach spaces, North-Holland, 1986
  15. S. Pincuk, Holomorphic inequivalence of certain classes of domains in $\mathbb{C}^n$, Mat. Sb. 111 (153) (1981), No. 1, 67–94.
  16. J. P. Rosay, Une caracterization de la boule parmi les domaines de $\mathbb{C}^n$ par son groupe d'automorphismes, Ann. Inst. Fourier (Grenoble) XXIX (1979), 91–97
  17. N. Sibony, A class of hyperbolic manifolds, Recent developments in several complex variables, Ann. Math. Studies 100 (1981), 357–372
  18. B. Wong, Characterization of the unit ball in $\mathbb{C}^n$ by its automorphism group, Invent. Math. 41 (1977), 253–257 https://doi.org/10.1007/BF01403050

Cited by

  1. A note on Kim–Ma characterization of the Hilbert ball vol.309, pp.2, 2005, https://doi.org/10.1016/j.jmaa.2004.09.024
  2. Model domains in ℂ3with abelian automorphism group vol.59, pp.3, 2014, https://doi.org/10.1080/17476933.2012.734505
  3. Some Aspects of the Kobayashi and Carathéodory Metrics on Pseudoconvex Domains vol.22, pp.2, 2012, https://doi.org/10.1007/s12220-010-9206-4
  4. Characterization of the unit ball in C n among complex manifolds of dimensionn vol.14, pp.4, 2004, https://doi.org/10.1007/BF02922176