• 제목/요약/키워드: the Sums of Sequences

검색결과 35건 처리시간 0.026초

CONVERGENCE PROPERTIES OF THE PARTIAL SUMS FOR SEQUENCES OF END RANDOM VARIABLES

  • Wu, Yongfeng;Guan, Mei
    • 대한수학회지
    • /
    • 제49권6호
    • /
    • pp.1097-1110
    • /
    • 2012
  • The convergence properties of extended negatively dependent sequences under some conditions of uniform integrability are studied. Some sufficient conditions of the weak law of large numbers, the $p$-mean convergence and the complete convergence for extended negatively dependent sequences are obtained, which extend and enrich the known results in the literature.

ON THE LIMITS OF SUMS OF FUZZY NUMBERS

  • Kwon, Joong-Sung
    • Journal of applied mathematics & informatics
    • /
    • 제5권1호
    • /
    • pp.153-162
    • /
    • 1998
  • We study limits of sums of fuzzy numbers with different spreads and different shape functions where addition is defined by the sup-t-norm. We show the existence of the limit of the series of fuzzy numbers and prove the uniform continuity of the limit. Finally we investigate a law of large numbers for sequences of fuzzy numbers.

DISCRETE CHEBYCHEV FOR MEANS OF SEQUENCES OF DIFFERENT LENGTHS

  • Cerone, P.;Dragomir, S.S.;Mills, T.M.
    • East Asian mathematical journal
    • /
    • 제21권2호
    • /
    • pp.137-150
    • /
    • 2005
  • Bounds for discrete Chebychev functionals that involve means of sequences of different lengths are investigated in the current article. Earlier bounds for the Chebychev functional involving sums of sequences of the same lengths are utilised in the current development. Weighted generalised Chebychev functionals are also examined.

  • PDF

Generalized k-Balancing and k-Lucas Balancing Numbers and Associated Polynomials

  • Kalika Prasad;Munesh Kumari;Jagmohan Tanti
    • Kyungpook Mathematical Journal
    • /
    • 제63권4호
    • /
    • pp.539-550
    • /
    • 2023
  • In this paper, we define the generalized k-balancing numbers {B(k)n} and k-Lucas balancing numbers {C(k)n} and associated polynomials, where n is of the form sk+r, 0 ≤ r < k. We give several formulas for these new sequences in terms of classic balancing and Lucas balancing numbers and study their properties. Moreover, we give a Binet style formula, Cassini's identity, and binomial sums of these sequences.

A GENERALIZATION OF A SUBSET-SUM-DISTINCT SEQUENCE

  • Bae, Jae-Gug;Choi, Sung-Jin
    • 대한수학회지
    • /
    • 제40권5호
    • /
    • pp.757-768
    • /
    • 2003
  • In 1967, as an answer to the question of P. Erdos on a set of integers having distinct subset sums, J. Conway and R. Guy constructed an interesting sequence of sets of integers. They conjectured that these sets have distinct subset sums and that they are close to the best possible with respect to the largest element. About 30 years later (in 1996), T. Bohman could prove that sets from the Conway-Guy sequence actually have distinct subset sums. In this paper, we generalize the concept of subset-sum-distinctness to k-SSD, the k-fold version. The classical subset-sum-distinct sets would be 1-SSD in our definition. We prove that similarly derived sequences as the Conway-Guy sequence are k-SSD.

EXACT SEQUENCES FOR SUMS OF PAIRWISE I.I.D. RANDOM VARIABLES

  • Hong, Dug-Hun;Park, Jin-Myung
    • 대한수학회보
    • /
    • 제30권2호
    • /
    • pp.167-170
    • /
    • 1993
  • In this paper, X, X$_{1}$, X$_{2}$, .. will denote any sequence of pairwise independent random variables with common distribution, and b$_{1}$, b$_{2}$.. will denote any sequence of constants. Using Chung [2, Theorem 4.2.5] and the same idea as in Chow and Robbins [1, Lemma 1 and 2] we have the following lemma.

  • PDF

ON THE WEAK LAW FOR WEIGHTED SUMS INDEXED BY RANDOM VARIABLES UNDER NEGATIVELY ASSOCIATED ARRAYS

  • Baek, Jong-Il;Lee, Dong-Myong
    • 대한수학회논문집
    • /
    • 제18권1호
    • /
    • pp.117-126
    • /
    • 2003
  • Let {$X_{nk}$\mid$1\;{\leq}\;k\;{\leq}\;n,\;n\;{\geq}\;1$} be an array of row negatively associated (NA) random variables which satisfy $P($\mid$X_{nk}$\mid$\;>\;x)\;{\leq}\;P($\mid$X$\mid$\;>\;x)$. For weighed sums ${{\Sigma}_{k=1}}^{Tn}\;a_kX_{nk}$ indexed by random variables {$T_n$\mid$n\;{\geq}$1$}, we establish a general weak law of large numbers (WLLN) of the form $({{\Sigma}_{k=1}}^{Tn}\;a_kX_{nk}\;-\;v_{[nk]})\;/b_{[an]}$ under some suitable conditions, where $\{a_n$\mid$n\;\geq\;1\},\; \{b_n$\mid$n\;\geq\;1\}$ are sequences of constants with $a_n\;>\;0,\;0\;<\;b_n\;\rightarrow \;\infty,\;n\;{\geq}\;1$, and {$v_{an}$\mid$n\;{\geq}\;1$} is an array of random variables, and the symbol [x] denotes the greatest integer in x.