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CONVERGENCE PROPERTIES OF THE PARTIAL SUMS

FOR SEQUENCES OF END RANDOM VARIABLES

Yongfeng Wu and Mei Guan

Abstract. The convergence properties of extended negatively depen-
dent sequences under some conditions of uniform integrability are studied.
Some sufficient conditions of the weak law of large numbers, the p-mean
convergence and the complete convergence for extended negatively depen-
dent sequences are obtained, which extend and enrich the known results
in the literature.

1. Introduction and preliminaries

The concept of negatively dependent (ND) random variables was introduced
by Ebrahimi and Ghosh ([4]).

Definition 1.1. The random variables X1, . . . , Xk are said to be negatively
upper dependent (NUD) if for all real x1, . . . , xk,

(1.1) P (Xi > xi, i = 1, 2, . . . , k) ≤

k∏

i=1

P (Xi > xi),

and negatively lower dependent (NLD) if

(1.2) P (Xi ≤ xi, i = 1, 2, . . . , k) ≤

k∏

i=1

P (Xi ≤ xi).

Random variables X1, . . . , Xk are said to be negatively dependent (ND) if they
are both NUD and NLD.

Obviously sequences of ND random variables are a family of very wide
scope, which contain sequences of independent random variables. Joag-Dev
and Proschan ([6]) once pointed out that NA (negatively associated) implies
ND, but neither NUD nor NLD implies NA. Since the paper of Joag-Dev and
Proschan ([6]) appeared, the convergence properties of ND random sequences
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have been studied by Bozorgnia and Patterson ([2]), Taylor et al. ([13], [14]),
Amini and Bozorgnia ([1]), Mi-Hwa Ko et al. ([7], [8]).

Liu ([10]) extended the negatively dependent structure. She introduced the
concept of extended negatively dependent (END) random variables.

Definition 1.2. We call random variables {Xi, i ≥ 1} END if there exists a
constant M > 0 such that both

(1.3) P (Xi ≤ xi, i = 1, 2, . . . , n) ≤ M

n∏

i=1

P (Xi ≤ xi)

and

(1.4) P (Xi > xi, i = 1, 2, . . . , n) ≤ M

n∏

i=1

P (Xi > xi),

hold for each n = 1, 2, . . . and all x1, . . . , xn.

Liu ([10]) pointed out the END structure is substantially more comprehen-
sive than the ND structure in that it can reflect not only a negative dependence
structure but also a positive one, to some extent. So it is very significant to
study probabilistic properties of this wider END class.

The following examples were provided in Liu ([10]) to illustrate that the
extended negative dependence indeed allows a wide range of dependence struc-
tures.

Example 1.1. If {Xi, i = 1, 2} and {Xi, i ≥ 3} are independent of each other,
where X1 is possibly valued at x11 ≤ x12 ≤ · · · ≤ x1N and {Xi, i ≥ 3} is a
sequence of mutually independent random variables, then the random variables
{Xi, i ≥ 1} are END. In fact, for any x1 and x2 such that

P (X1 ≤ x1)P (X2 ≤ x2) = 0 or P (X1 > x1)P (X2 > x2) = 0,

both (1.3) and (1.4) hold trivially. Additionally, for any x1 and x2 such that

P (X1 ≤ x1)P (X2 ≤ x2) 6= 0 and P (X1 > x1)P (X2 > x2) 6= 0,

take

M = 1/min{P (X1 = x11), P (X1 = x1N )},

then both (1.3) and (1.4) still hold. Note that there are no dependence restric-
tions between random variables X1 and X2.

Example 1.2. For any n = 1, 2, . . ., let X1, . . . , Xn be dependent according
to a copula function C(u1, . . . , un) with absolutely continuous dfs F1, . . . , Fn.
Assume that the joint copula density

C1,...,n(u1, . . . , un) =
∂n

∂u1 · · ·∂un
C(u1, . . . , un)
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exists and is uniformly bounded in the whole domain. The random variables
{Xi, i ≥ 1} are then END. As noted in Remark 3.1 of Ko and Tang ([9]), for
example, copulas in the Frank family of the form

Cα(u1, . . . , un) =
1

α
ln

(
1 +

(eαu1 − 1) · · · (eαun − 1)

(eα − 1)n−1

)
, α < 0

belong to this category.

Definition 1.3 (Chandra, [9]). Let {Xn, n ≥ 1} be a sequence of random vari-
ables and p > 0. The sequence {Xn, n ≥ 1} is said to be uniform integrability
in the Cesàro sense if

(1.5) lim
x→∞

sup
n∈N

n−1
n∑

k=1

E|Xk|
pI(|Xk|≥x) = 0.

Since

E|Xk|
pI(|Xk|≥x) =

(∫ xp

0

+

∫ ∞

xp

)
P (|Xk|

pI(|Xk|≥x) > t)dt

=

∫ xp

0

P (|Xk| ≥ x)dt+

∫ ∞

xp

P (|Xk|
p > t)dt

= xpP (|Xk| ≥ x) +

∫ ∞

xp

P (|Xk|
p > t)dt,

we know (1.5) is equivalent to

(1.6) lim
x→∞

sup
n∈N

n−1
n∑

k=1

xpP (|Xk| ≥ x) = 0

and

(1.7) lim
x→∞

sup
n∈N

n−1
n∑

k=1

∫ ∞

xp

P (|Xk|
p > t)dt = 0.

Wu et al. ([15]) studied the weak law of large numbers and the p-mean con-
vergence for a sequence of NA random variables under the conditions of (1.5)
and (1.6). S. H. Sung et al. ([12]) studied the weak law of large numbers for an
array of dependent random variables under some conditions of uniform inte-
grability. The goal of this paper is to study the weak law of large numbers, the
p-mean convergence and the complete convergence for END sequences under
some conditions of uniform integrability in the Cesàro sense. For this goal we
need the following lemmas.

Lemma 1.1 (Liu, [10]). If random variables {Xi, i ≥ 1} are END, then

(1) for any n = 1, 2, . . ., there exists a constant M > 0 such that

(1.8) E(

n∏

i=1

X+
i ) ≤ M

n∏

i=1

EX+
i ;
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(2) {gi(Xi), i = 1, 2, . . .} are still END, where {gi(·), i = 1, 2, . . .} are either

all monotone increasing or all monotone decreasing.

Lemma 1.2. Let {Xn, n ≥ 1} be a sequence of END random variables with

mean zero and 0 < Bn =
∑n

k=1 EX2
k < ∞. Let Sn =

∑n
k=1 Xk. Then there

exists a constant M > 0 such that

(1.9) P (|Sn| ≥ x) ≤

n∑

k=1

P (|Xk| ≥ y) + 2Mexp
(x
y
−

x

y
log

(
1 +

xy

Bn

))

for ∀x > 0, y > 0.

Proof. The proof is similar to the proof of Theorem 2 in Fuk and Nagaev ([5]).
Let y > 0, Yi = min(Xi, y) and Un =

∑n
i=1 Yi. Clearly EYi ≤ 0, EY 2

i ≤ EX2
i .

By Lemma 1.1(2) for h > 0, {ehYi , 1 ≤ i ≤ n} is nonnegative END. Thus, by
Lemma 1.1(1), there exists a constant M > 0 such that

(1.10) EehUn = E

n∏

i=1

ehYi ≤ M

n∏

i=1

EehYi .

Denoting Fi(x) = P (Xi < x), then

EehYi =

∫ y

−∞

ehxdFi(x) + ehyP (Xi ≥ y)

= 1 + hEYi +

∫ y

−∞

(ehx − 1− hx)dFi(x) + (ehy − 1− hy)P (Xi ≥ y)

≤ 1 +

∫ y

−∞

(ehx − 1− hx)dFi(x) + (ehy − 1− hy)P (Xi ≥ y).

For fixed h > 0, the function f(x) = (ehx − 1 − hx)/x2 is increasing for all x.
Note that 1 + u ≤ eu, ∀u ∈ R. Hence

EehYi ≤ 1 +
ehy − 1− hy

y2

(∫ y

−∞

x2dFi(x) + y2P (Xi ≥ y)

)

≤ 1 +
ehy − 1− hy

y2
EX2

i ≤ exp
(ehy − 1− hy

y2
EX2

i

)
.

Therefore, by (1.10), for ∀x > 0, ∀h > 0,

e−hxEehUn ≤ Mexp
(
−hx+Bn

ehy − 1− hy

y2

)
.

Letting h = log(1 + xy
Bn

)/y, we have

e−hxEehUn ≤ Mexp
(x
y
−

x

y
log(1 +

xy

Bn
)−

Bn

y2
log(1 +

xy

Bn
)
)

≤ Mexp
(x
y
−

x

y
log(1 +

xy

Bn
)
)
.
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Therefore

P (Sn ≥ x) ≤ P (Sn 6= Un) + P (Un ≥ x)

≤
n∑

k=1

P (Xk ≥ y) + e−hxEehUn

≤

n∑

k=1

P (Xk ≥ y) +Mexp
(x
y
−

x

y
log(1 +

xy

Bn
)
)
.

Similarly, when Xi is replaced by −Xi, we have

P (−Sn ≥ x) ≤

n∑

k=1

P (−Xk ≥ y) +Mexp
(x
y
−

x

y
log(1 +

xy

Bn
)
)
.

Therefore, for ∀x > 0, ∀y > 0, we have

P (|Sn| ≥ x) ≤ P (Sn ≥ x) + P (−Sn ≥ x)

≤

n∑

k=1

P (|Xk| ≥ y) + 2Mexp
(x
y
−

x

y
log(1 +

xy

Bn
)
)
.

The proof is complete. �

Lemma 1.3. Let {Xn, n ≥ 1} be a sequence of random variables satisfying

(1.6) for some real number p > 0. Then

(1.11) lim
n→∞

n−β/p
n∑

k=1

E|Xk|
βI(|Xk|≤n1/p) = 0, ∀β > p.

Proof. Put I = n−β/p
n∑

k=1

E|Xk|
βI(|Xk|≤n1/p). Then

I = n−β/p
n∑

k=1

∫ ∞

0

P
(
|Xk|

βI(|Xk|≤n1/p) ≥ t
)
dt

= n−β/p
n∑

k=1

∫ nβ/p

0

P
(
|Xk|

βI(|Xk|≤n1/p) ≥ t
)
dt

≤ n−β/p
n∑

k=1

∫ nβ/p

0

P
(
|Xk|

β ≥ t
)
dt.

Let t = yβ . Then

I ≤ βn−β/p
n∑

k=1

∫ n1/p

0

yβ−1P
(
|Xk| ≥ y

)
dy

≤ β n−β/p+1

∫ n1/p

0

yβ−1 n−1
n∑

k=1

P
(
|Xk| ≥ y

)
dy.
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By (1.6), for ∀ε > 0, ∃M > 0 such that when y > M , we have

sup
n∈N

n−1
n∑

k=1

P (|Xk| ≥ y) ≤ εy−p.

Hence when n1/p > M , we have

I ≤ β n−β/p+1
(∫ M

0

yβ−1 n−1
n∑

k=1

P
(
|Xk| ≥ y

)
dy + ε

∫ n1/p

M

yβ−p−1 dy
)

≤ β n−β/p+1(C +
ε

β − p
nβ/p−1) = Cβ n−β/p+1 +

βε

β − p
.

Since p < β and ε > 0 is arbitrary, I → 0 as n → ∞. �

Here in after, the symbol C stands for a generic positive constant which may
differ from one place to another. Let Sn =

∑n
k=1 Xk.

2. Main results

Theorem 2.1. Let 1 ≤ p < 2 and {Xn, n ≥ 1} be a sequence of END random

variables with EXn = 0. Then condition (1.6) implies

(2.1) n−1/pSn
P
−→ 0, n → ∞.

Theorem 2.2. Let 1 ≤ p < 2 and {Xn, n ≥ 1} be a sequence of END random

variables with EXn = 0. Then condition (1.5) implies

(2.2) n−1/pSn
Lp
−→ 0, n → ∞.

Corollary 2.1. Let 1 ≤ p < 2 and {Xn, n ≥ 1} be a sequence of END random

variables with common distribution. Then E|X |p < ∞ implies (2.2).

Remark 2.1. Pyke and Root ([11]) obtained the p-mean convergence for a se-
quence of i.i.d. random variables under the same condition of Corollary 2.1.
Therefore, Theorem 2.2 extends the result of Pyke and Root ([11]).

Remark 2.2. Wu et al. ([15]) obtained the weak law of large numbers and the
p-mean convergence for a sequence of NA random variables under the same
conditions of Theorems 2.1 and 2.2. Since NA implies ND or ND implies END,
Theorems 2.1 and 2.2 extend the results of Wu et al. ([15]).

Theorem 2.3. Let 1 ≤ p < 2 and {Xn, n ≥ 1} be a sequence of END random

variables with EXn = 0. For δ > 2/p− 1, αp ≥ 1, suppose

(2.3) lim
x→∞

sup
n∈N

n−1
n∑

k=1

x1+δP
(
|Xk|

p ≥ x
)
= 0.

Then

(2.4)

∞∑

n=1

nαp−2P
(
|Sn| > nαε

)
< ∞, ∀ε > 0.
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Proof of Theorem 2.1. For any 1 ≤ k ≤ n, let

X
′

k = −n1/pI(Xk≤−n1/p) +XkI(|Xk|<n1/p) + n1/pI(Xk≥n1/p),

X
′′

k = Xk −X
′

k = (Xk + n1/p)I(Xk≤−n1/p) + (Xk − n1/p)I(Xk≥n1/p),

S
′

n=̂

n∑

k=1

X
′

k, S
′′

n =̂

n∑

k=1

X
′′

k .

By Lemma 1.1(2), X
′

k and X
′′

k are still END. For ∀ε > 0, we have

P
(
n−1/p|Sn| ≥ ε

)
≤ P

(
|S

′

n − ES
′

n| ≥ n1/pε/2
)
+ P

(
|S

′′

n − ES
′′

n | ≥ n1/pε/2
)

=̂ I1 + I2.

Let B
′

n =
∑n

k=1 E(X
′

k − EX
′

k)
2 and x = y = n1/pε/2. By Lemma 1.2 and the

Markov inequality, we have

I1 ≤
n∑

k=1

P
(
|X

′

k − EX
′

k| ≥ n1/pε/2
)
+

CB
′

n

B′

n + n2/pε2/4

≤ Cn−2/pB
′

n ≤ Cn−2/p
n∑

k=1

E(X
′

k)
2

≤ Cn−2/p
n∑

k=1

n2/pP (|Xk| ≥ n1/p) + Cn−2/p
n∑

k=1

EX2
kI(|Xk|<n1/p)

= C

n∑

k=1

P (|Xk| ≥ n1/p) + Cn−2/p
n∑

k=1

EX2
kI(|Xk|<n1/p)

=̂ I11 + I12.

Clearly, (1.6) implies I11 → 0 as n → ∞. Take β = 2 in (1.11). Then by
Lemma 1.3, I12 → 0 as n → ∞. Therefore, I1 → 0 as n → ∞.

It remains to prove I2 → 0 as n → ∞. From (1.6) and the definition of X
′′

k ,
we have

I2 ≤ P
( n∑

k=1

|X
′′

k − EX
′′

k | ≥ n1/pε/2
)

≤ P
(
∃k; 1 ≤ k ≤ n, such that |Xk| ≥ n1/p

)

≤

n∑

k=1

P (|Xk| ≥ n1/p) → 0 as n → ∞.

The proof is complete. �

Proof of Theorem 2.2. For ∀ε > 0, we have

E
∣∣n−1/pSn

∣∣p = n−1

∫ ∞

0

P
(
|Sn| > t1/p

)
dt ≤ ε+ n−1

∫ ∞

εn

P
(
|Sn| > t1/p

)
dt.
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For t ≥ εn, let

Yk = −t1/pI(Xk≤−t1/p) +XkI(|Xk|<t1/p) + t1/pI(Xk≥t1/p),

Zk = Xk − Yk = (Xk + t1/p)I(Xk≤−t1/p) + (Xk − t1/p)I(Xk≥t1/p).

By Lemma 1.1(2), Yk and Zk are still END. Therefore, we have

E
∣∣n−1/pSn

∣∣p ≤ ε+ n−1

∫ ∞

εn

P
(∣∣∣

n∑

k=1

Zk

∣∣∣ > t1/p/2
)
dt

+ n−1

∫ ∞

εn

P
(∣∣∣

n∑

k=1

Yk

∣∣∣ > t1/p/2
)
dt

=̂ ε+ I3 + I4.

To prove (2.2), it suffices to prove that I3 → 0 and I4 → 0 as n → ∞. For I3,
we can get

I3 ≤ n−1

∫ ∞

εn

P
(
∃k; 1 ≤ k ≤ n, such that |Xk| > t1/p

)
dt

≤ n−1

∫ ∞

εn

n∑

k=1

P (|Xk| ≥ t1/p)dt ≤

n∑

k=1

n−1E|Xk|
pI(|Xk|≥(εn)1/p)

≤ sup
m∈N

m−1
m∑

k=1

E|Xk|
pI(|Xk|≥(εn)1/p) → 0 as n → ∞.

Then we prove I3 → 0 as n → ∞. Note that |Zk| ≤ |Xk|I(|Xk|≥t1/p). From

EXk = 0 and (1.5), we have

max
t≥εn

∣∣∣t−1/p
n∑

k=1

EYk

∣∣∣ = max
t≥εn

∣∣∣t−1/p
n∑

k=1

EZk

∣∣∣

≤ max
t≥εn

t−1/p
n∑

k=1

E|Xk|I(|Xk|≥t1/p)

≤ (εn)−1/p
n∑

k=1

E|Xk|I(|Xk|≥(εn)1/p)

≤ ε−1 sup
m∈N

m−1
m∑

k=1

E|Xk|
pI(|Xk|≥(εn)1/p) → 0 as n → ∞.

Therefore, while n is sufficiently large, for t ≥ εn, we have

P
(∣∣∣

n∑

k=1

Yk

∣∣∣ > t1/p/2
)
≤ P

(∣∣∣
n∑

k=1

(
Yk − EYk

)∣∣∣ > t1/p/4
)
.
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Let B
′′

n =
∑n

k=1 E(Yk − EYk)
2, x = t1/p/4, y = t1/p/4γ, γ > p. By Lemma

1.2, we have

I4 ≤ n−1

∫ ∞

εn

P
(∣∣∣

n∑

k=1

(
Yk − EYk

)∣∣∣ > t1/p/4
)
dt

≤ n−1

∫ ∞

εn

n∑

k=1

P
(∣∣Yk − EYk

∣∣ > t1/p/4γ
)
dt

+ Cn−1

∫ ∞

εn

( B
′′

n

B′′

n + t2/p/16γ

)γ

dt =̂ I5 + I6.

Since

max
t≥εn

t−1/p|EYk| = max
t≥εn

t−1/p|EZk|

≤ (εn)−1/pE|Xk|I(|Xk|≥(εn)1/p)

≤ (εn)−1/p
n∑

k=1

E|Xk|I(|Xk|≥(εn)1/p)

≤ ε−1 sup
m∈N

m−1
m∑

k=1

E|Xk|
pI(|Xk|≥(εn)1/p) → 0 as n → ∞.

Hence

I5 ≤ n−1
n∑

k=1

∫ ∞

εn

P
(∣∣Yk

∣∣ > t1/p/8γ
)
dt

= n−1
n∑

k=1

∫ ∞

εn

P
(∣∣Xk

∣∣I(|Xk|<t1/p) > t1/p/8γ
)
dt

+ n−1
n∑

k=1

∫ ∞

εn

P
(∣∣Xk

∣∣ ≥ t1/p
)
dt

=̂ I51 + I52.

By similar argument as in the proof of I3 → 0, we may prove I52 → 0. For I51,
we have

I51 = n−1
n∑

k=1

∫ ∞

εn

P
(∣∣Xk

∣∣I((εn)1/p/8γ<|Xk|<t1/p) > t1/p/8γ
)
dt

≤ n−1
n∑

k=1

∫ ∞

0

P
(∣∣Xk

∣∣I(|Xk|>(εn)1/p/8γ) > t1/p/8γ
)
dt

≤ Cn−1
n∑

k=1

E|Xk|
pI(|Xk|>(εn)1/p/8γ)
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≤ C sup
m∈N

m−1
m∑

k=1

E|Xk|
pI(|Xk|>(εn)1/p/8γ) → 0 as n → ∞.

Then we prove I6 → 0 as n → ∞. Clearly, for x ≥ 0, y ≥ 0, z ≥ 0 and
γ > p ≥ 1, (x+y+z)γ ≤ 3γ−1(xγ +yγ +zγ). Hence, by Cr-inequality, we have

I6 ≤ Cn−1

∫ ∞

εn

(
t−2/p

n∑

k=1

EX2
kI(|Xk|<t1/p) +

n∑

k=1

P (|Xk| ≥ t1/p)
)γ

dt

= Cn−1

∫ ∞

εn

(
t−2/p

n∑

k=1

EX2
kI(|Xk|<(εn)1/p)

+ t−2/p
n∑

k=1

EX2
kI((εn)1/p)≤|Xk|<t1/p) +

n∑

k=1

P (|Xk| ≥ t1/p)

)γ

dt

≤ Cn−1

∫ ∞

εn

(
t−2/p

n∑

k=1

EX2
kI(|Xk|<(εn)1/p)

)γ

dt

+ Cn−1

∫ ∞

εn

(
t−1/p

n∑

k=1

E|Xk|I((εn)1/p)≤|Xk|<t1/p)

)γ

dt

+ Cn−1

∫ ∞

εn

( n∑

k=1

P (|Xk| ≥ t1/p)

)γ

dt

=̂ I61 + I62 + I63.

Note that (1.5) implies (1.6). Take β = 2 in (1.11), by Lemma 1.3, p < 2 and
γ > p, we have

I61 = Cn−1

( n∑

k=1

EX2
kI(|Xk|<(εn)1/p)

)γ ∫ ∞

εn

t−2γ/pdt

≤ Cε

(
(εn)−2/p

n∑

k=1

EX2
kI(|Xk|<(εn)1/p)

)γ

→ 0 as n → ∞.

By γ > p, we have

I62 ≤ Cn−1

∫ ∞

εn

(
t−1/p

n∑

k=1

E|Xk|I(|Xk|≥(εn)1/p)

)γ

dt

≤ Cn−1

( n∑

k=1

E|Xk|I(|Xk|≥(εn)1/p)

)γ ∫ ∞

εn

t−γ/pdt

≤ Cε

(
(εn)−1/p

n∑

k=1

E|Xk|I(|Xk|≥(εn)1/p)

)γ

≤ Cε

(
(εn)−1

n∑

k=1

E|Xk|
pI(|Xk|≥(εn)1/p)

)γ
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≤ Cε1−γ

(
sup
m∈N

m−1
m∑

k=1

E|Xk|
pI(|Xk|≥(εn)1/p)

)γ

→ 0 as n → ∞.

Finally, we prove I63 → 0. Clearly,

max
t≥εn

n∑

k=1

P (|Xk| > t1/p) ≤

n∑

k=1

P (|Xk| > (εn)1/p)

≤ ε−1n−1
n∑

k=1

E|Xk|
pI(|Xk|≥(εn)1/p) → 0 as n → ∞.

Therefore, while n is sufficiently large,
∑n

k=1 P (|Xk| > t1/p) < 1 holds uni-
formly for t ≥ εn. By γ > 1 and similar argument as in the proof of I3 → 0,
we can get

I63 ≤ Cn−1

∫ ∞

εn

n∑

k=1

P (|Xk| ≥ t1/p)dt

≤ C sup
m∈N

m−1
m∑

k=1

E|Xk|
pI(|Xk|≥(εn)1/p) → 0 as n → ∞.

The proof is complete. �

Proof of Theorem 2.3. We follow the notations of S
′

n and S
′′

n in the proof of
Theorem 2.1. Let

X
′

k = −xI(Xk≤−x) +XkI(|Xk|<x) + xI(Xk≥x),

X
′′

k = Xk −X
′

k = (Xk + x)I(Xk≤−x) + (Xk − x)I(Xk≥x).

Here we take x = nα(2−p)/4. By Lemma 1.1(2), X
′

k and X
′′

k are still END. For
any ε > 0, we have

∞∑

n=1

nαp−2 P
(
|Sn| > nαε

)

≤

∞∑

n=1

nαp−2 P
(
|S

′

n − ES
′

n| > nαε/2
)
+

∞∑

n=1

nαp−2 P
(
|S

′′

n − ES
′′

n | > nαε/2
)

=̂ I7 + I8.

To prove (2.4), it suffices to prove I7 < ∞ and I8 < ∞. Note that |X
′

k| ≤

nα(2−p)/4. By similar argument as in the proof of I1 → 0, Lemma 1.2 and the
Markov inequality, we have

I7 ≤ C

∞∑

n=1

nαp−2−2α
n∑

k=1

E(X
′

k)
2 ≤ C

∞∑

n=1

n−1−α(2−p)/2 < ∞.
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Note that |X
′′

k | ≤ |Xk|I(|Xk|≥x). By Lemma 1.2 and the Markov inequality, we
also have

I8 ≤ C
∞∑

n=1

nαp−2−2α
n∑

k=1

E|Xk|
2I(|Xk|≥x)

= C

∞∑

n=1

nαp−2−2α
n∑

k=1

(∫ x2

0

+

∫ ∞

x2

)
P
(
|Xk|

2I(|Xk|≥x) > t
)
dt

= C

∞∑

n=1

nαp−2−2α
n∑

k=1

(∫ x2

0

P
(
|Xk| ≥ x

)
dt+

∫ ∞

x2

P
(
|Xk|

2 > t
)
dt

)

= C

∞∑

n=1

nαp−2−2α
n∑

k=1

x2P
(
|Xk| ≥ x

)

+ C

∞∑

n=1

nαp−2−2α
n∑

k=1

∫ ∞

x2

P
(
|Xk|

2 > t
)
dt

=̂ I81 + I82.

From (2.3), ∃M > 0, while x > M , we have

(2.5) sup
n∈N

n−1
n∑

k=1

P
(
|Xk|

p ≥ x
)
≤ x−(1+δ).

By x = nα(2−p)/4, (2.5) and 1 + δ − 2
p > 0 we have

I81 =
∞∑

n=1

nαp−2−2α
n∑

k=1

x2P
(
|Xk| ≥ x

)

=

∞∑

n=1

nαp−2α−1n−1
n∑

k=1

x2P
(
|Xk| ≥ x

)

≤
∞∑

n=1

nαp−2α−1x−p(1+δ)+2

=

∞∑

n=1

n−1−α(2−p)−αp(2−p)(1+δ− 2

p )/4 < ∞

and

I82 =

∞∑

n=1

nαp−2α−1

∫ ∞

x2

n−1
n∑

k=1

P
(
|Xk|

2 > t
)
dt

≤

∞∑

n=1

nαp−2α−1

∫ ∞

x2

t−
p
2
(1+δ)dt

≤ C

∞∑

n=1

n−1−α(2−p)x−p(1+δ)+2
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≤ C

∞∑

n=1

n−1−α(2−p)−αp(2−p)(1+δ− 2

p )/4 < ∞.

The proof is complete. �
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