References
- Stochastic Anal. Appl. v.5 Some general strong laws for weighted sums of stochastically dominated random variables A. Adler;A. Rosalsky https://doi.org/10.1080/07362998708809104
- Internat, J. math. Sci. v.14 On the weak law of large number for normed weighted sums of iid random variables A. Adler;A. Rosalsky https://doi.org/10.1155/S0161171291000182
- J. Multivariate Ana. v.37 A weak law for normed weight ed sums of random elements in Rademacher Type p Banach Space A. Adler;A. Rosalsky;R. L. Taylor https://doi.org/10.1016/0047-259X(91)90083-E
- Comm. Statist. v.A10 Positive dependence in multivariate distributions K. Alam;K. M. Lal Saxena
- Probability Theory: Independence, Interchange ability, Martingales(2nd ed.) Y. S. Chow;H. Teicher
- Amer. J. Math. v.68 A limiting theorem for random variables with infinite moments W. Feller https://doi.org/10.2307/2371837
- Statist. Probab. Lett. v.14 The weak law of large numbers for arrays A. Gut https://doi.org/10.1016/0167-7152(92)90209-N
- Ann. Statist. v.11 Negative association of random variables with applications K. Joag-Dev;F. Proschan https://doi.org/10.1214/aos/1176346079
- Theory and Application of infinite series(2nd english ed.) K. Knopp
- Ann. Univ. Mariae Curie-sklodovska Sect. A LI v.1 On the weak law of large numbers for randomly indexed partial sums for arrays P. Kowalski;Z. Rychlik
- Ann. Math. Statist. v.37 Some concept of dependence E. L. Lehmann https://doi.org/10.1214/aoms/1177699260
- Probability Theory I(4th ed.) M. Loeve
- Statist. Probab. Lett. v.15 A note on the almost sure convergence of sums of negatively dependent random variables P. Matula https://doi.org/10.1016/0167-7152(92)90191-7
- IMS Lecture Notes Monogr. Ser. 5. Ins Math. Statist. Asymptotic independence and limit theorems for positively and negatively dependent random variables, in Inequalities in Statistics and Probability C. M. Newman;Y. L. Tong(ed.)
- Ann. probab. v.9 A limit theorem for double arrays A. Rosalsky;H. Teicher https://doi.org/10.1214/aop/1176994418
- Ann. Probab. A comparison theorem on maximal inequalities between negatively associated and independent random variables Q. M. Shao
- Theory of Probab. & Its Appli. v.46 no.2 On the logarithm law for strictly stationary and negatively associated arrays C. Su;T. Hu;H. Liang https://doi.org/10.1137/S0040585X97979020