• Title/Summary/Keyword: the Riemann function

Search Result 132, Processing Time 0.022 seconds

FRACTIONAL CALCULUS OPERATORS OF THE PRODUCT OF GENERALIZED MODIFIED BESSEL FUNCTION OF THE SECOND TYPE

  • Agarwal, Ritu;Kumar, Naveen;Parmar, Rakesh Kumar;Purohit, Sunil Dutt
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.3
    • /
    • pp.557-573
    • /
    • 2021
  • In this present paper, we consider four integrals and differentials containing the Gauss' hypergeometric 2F1(x) function in the kernels, which extend the classical Riemann-Liouville (R-L) and Erdélyi-Kober (E-K) fractional integral and differential operators. Formulas (images) for compositions of such generalized fractional integrals and differential constructions with the n-times product of the generalized modified Bessel function of the second type are established. The results are obtained in terms of the generalized Lauricella function or Srivastava-Daoust hypergeometric function. Equivalent assertions for the Riemann-Liouville (R-L) and Erdélyi-Kober (E-K) fractional integral and differential are also deduced.

FRACTIONAL CALCULUS AND INTEGRAL TRANSFORMS OF THE M-WRIGHT FUNCTION

  • KHAN, N.U.;KASHMIN, T.;KHAN, S.W.
    • Journal of applied mathematics & informatics
    • /
    • v.37 no.5_6
    • /
    • pp.341-349
    • /
    • 2019
  • This paper is concerned to investigate M-Wright function, which was earlier known as transcendental function of the Wright type. M-Wright function is a special case of the Wright function given by British mathematician (E.Maitland Wright) in 1933. We have explored the cosequences of Riemann-Liouville Integral and Differential operators on M-Wright function. We have also evaluated integral transforms of the M-Wright function.

Certain Inequalities Involving Pathway Fractional Integral Operators

  • Choi, Junesang;Agarwal, Praveen
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.4
    • /
    • pp.1161-1168
    • /
    • 2016
  • Belarbi and Dahmani [3], recently, using the Riemann-Liouville fractional integral, presented some interesting integral inequalities for the Chebyshev functional in the case of two synchronous functions. Subsequently, Dahmani et al. [5] and Sulaiman [17], provided some fractional integral inequalities. Here, motivated essentially by Belarbi and Dahmani's work [3], we aim at establishing certain (presumably) new inequalities associated with pathway fractional integral operators by using synchronous functions which are involved in the Chebychev functional. Relevant connections of the results presented here with those involving Riemann-Liouville fractional integrals are also pointed out.

DETERMINANTS OF THE LAPLACIANS ON THE n-DIMENSIONAL UNIT SPHERE Sn (n = 8, 9)

  • Choi, June-Sang
    • Honam Mathematical Journal
    • /
    • v.33 no.3
    • /
    • pp.321-333
    • /
    • 2011
  • During the last three decades, the problem of evaluation of the determinants of the Laplacians on Riemann manifolds has received considerable attention by many authors. The functional determinant for the n-dimensional sphere $S^n$ with the standard metric has been computed in several ways. Here we aim at computing the determinants of the Laplacians on $S^n$ (n = 8, 9) by mainly using ceratin known closed-form evaluations of series involving Zeta function.

THE RIEMANN DELTA INTEGRAL ON TIME SCALES

  • Park, Jae Myung;Lee, Deok Ho;Yoon, Ju Han;Kim, Young Kuk;Lim, Jong Tae
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.2
    • /
    • pp.327-333
    • /
    • 2014
  • In this paper, we define the extension $f^*:[a,b]{\rightarrow}\mathbb{R}$ of a function $f:[a,b]_{\mathbb{T}}{\rightarrow}\mathbb{R}$ for a time scale $\mathbb{T}$ and show that f is Riemann delta integrable on $[a,b]_{\mathbb{T}}$ if and only if $f^*$ is Riemann integrable on [a,b].

Lp-Boundedness for the Littlewood-Paley g-Function Connected with the Riemann-Liouville Operator

  • Rachdi, Lakhdar Tannech;Amri, Besma;Chettaoui, Chirine
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.1
    • /
    • pp.185-220
    • /
    • 2016
  • We study the Gauss and Poisson semigroups connected with the Riemann-Liouville operator defined on the half plane. Next, we establish a principle of maximum for the singular partial differential operator $${\Delta}_{\alpha}={\frac{{\partial}^2}{{\partial}r^2}+{\frac{2{\alpha}+1}{r}{\frac{\partial}{{\partial}r}}+{\frac{{\partial}^2}{{\partial}x^2}}+{\frac{{\partial}^2}{{\partial}t^2}}};\;(r,x,t){\in}]0,+{\infty}[{\times}{\mathbb{R}}{\times}]0,+{\infty}[$$. Later, we define the Littlewood-Paley g-function and using the principle of maximum, we prove that for every $p{\in}]1,+{\infty}[$, there exists a positive constant $C_p$ such that for every $f{\in}L^p(d{\nu}_{\alpha})$, $${\frac{1}{C_p}}{\parallel}f{\parallel}_{p,{\nu}_{\alpha}}{\leqslant}{\parallel}g(f){\parallel}_{p,{\nu}_{\alpha}}{\leqslant}C_p{\parallel}f{\parallel}_{p,{\nu}_{\alpha}}$$.

FRACTIONAL DIFFERENTIATION OF THE PRODUCT OF APPELL FUNCTION F3 AND MULTIVARIABLE H-FUNCTIONS

  • Choi, Junesang;Daiya, Jitendra;Kumar, Dinesh;Saxena, Ram Kishore
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.115-129
    • /
    • 2016
  • Fractional calculus operators have been investigated by many authors during the last four decades due to their importance and usefulness in many branches of science, engineering, technology, earth sciences and so on. Saigo et al. [9] evaluated the fractional integrals of the product of Appell function of the third kernel $F_3$ and multivariable H-function. In this sequel, we aim at deriving the generalized fractional differentiation of the product of Appell function $F_3$ and multivariable H-function. Since the results derived here are of general character, several known and (presumably) new results for the various operators of fractional differentiation, for example, Riemann-Liouville, $Erd\acute{e}lyi$-Kober and Saigo operators, associated with multivariable H-function and Appell function $F_3$ are shown to be deduced as special cases of our findings.