AN IDENTITY DUE TO RAO AND SARMA

Jinsook Kang and Junesang Choi

1. Introduction

The Riemann Zeta function $\zeta(s)$ is defined by

$$
\begin{equation*}
\zeta(s):=\sum_{n=1}^{\infty} \frac{1}{n^{s}} \quad(\Re(s)>1) \tag{1}
\end{equation*}
$$

which can be continued analytically to the whole s-plane except for a simple pole at $s=1$ with its residue 1 by the contour integral representation (cf. Whittaker and Watson i7. p. 266]) or other various integral representations (see Erdélyi et al. [2, p. 33, Eqs. (12) to (15)]

Rao and Sarma [4] proved the following useful identity by making use of the above-mentioned method-

$$
\begin{equation*}
2 \sum_{r=1}^{\infty} \frac{1}{r^{a}} \sum_{k=1}^{r} \frac{1}{k}=(a+2) \zeta(a+1)-\sum_{z==1}^{a-2} \zeta(a-i) \zeta(\imath+1) \tag{2}
\end{equation*}
$$

where $a \in \mathbb{N} \backslash\{1\}$ and $\mathbb{N}:=\{1,2,3, .$.$\} . The identity (2) can easily$ be rewritten in an equivalent form.

$$
\begin{equation*}
2 \sum_{q=1}^{\infty} \frac{1}{q^{n}}\left(\sum_{k=1}^{q-1} \frac{1}{k}\right)=n \zeta(n+1)-\sum_{k=1}^{n-2} \zeta(n-k) \zeta(k+1) \tag{3}
\end{equation*}
$$

where the empty sum is understood (as usual) to be nil.

[^0]
2. A proof of the result and remarks

To give an elementary proof of (3), first consider

$$
\begin{aligned}
\sum_{k=1}^{n-2} \zeta(n-k) \dot{\zeta}(k+1) & =\zeta(2) \zeta(n-1)+\zeta(3) \zeta(n-2)+\cdots+\zeta(n-1) \zeta(2) \\
& =\sum_{p=1}^{\infty} \sum_{q=1}^{\infty}\left\{\frac{1}{p^{2}} \cdot \frac{1}{q^{n-1}}+\frac{1}{p^{3}} \cdot \frac{1}{q^{n-2}}+\cdots+\frac{1}{p^{n-1}} \cdot \frac{1}{q^{2}}\right\} \\
& =\lim _{N \rightarrow \infty} S_{N}
\end{aligned}
$$

where. for convenience,
(4)

$$
S_{N}:=\sum_{p=1}^{N} \sum_{q=1}^{N}\left\{\frac{1}{p^{2}} \cdot \frac{1}{q^{n-1}}+\frac{1}{p^{3}} \frac{1}{q^{n-2}}+\cdots+\frac{1}{p^{n-1}} \cdot \frac{1}{q^{2}}\right\} \quad(N \in \mathbb{N})
$$

Observing the series within braces in (4) is a geometric series, and taking care of the exceptional case $p=q$, the series (4) becomes

$$
\begin{equation*}
\sum_{q=1}^{N}\left\{\sum_{\substack{p=1 \\ p \neq q}}^{N} \frac{1}{p-q}\left(\frac{q^{1-n}}{p}-\frac{p^{1-n}}{q}\right)+\left(r_{i}-2\right) \frac{1}{q^{n+1}}\right\} \tag{5}
\end{equation*}
$$

Considering the inner summation part in (5) yields

$$
\sum_{\substack{q=1}}^{N} \sum_{\substack{p=1 \\ p \neq q}}^{N} \frac{1}{p-q}\left(\frac{q^{1-n}}{p}-\frac{p^{1-n}}{q}\right)
$$

$$
\begin{equation*}
=\sum_{\substack{q=1 \\ q=1}}^{N} \sum_{\substack{p=1 \\ p \neq \varphi}}^{N} \frac{1}{p-q} \cdot \frac{q^{1-n}}{p}+\sum_{\substack{p=1 \\ p=1 \\ q \neq p}}^{N} \frac{1}{q-p} \cdot \frac{p^{1-n}}{q} . \tag{6}
\end{equation*}
$$

Inverting the order of summation in the second double sum and considering the interchange of the dummy indices in the second sum,
(6) may be written as
(7) $\sum_{\substack{q=1}}^{N} \sum_{\substack{p=1 \\ p \neq q}}^{N} \frac{q^{1-n}}{p(p-q)}+\sum_{p=1}^{N} \sum_{\substack{q=1 \\ q \neq \gamma}}^{N} \frac{p^{1-n}}{q(q-p)}=2 \sum_{q=1}^{N} \frac{1}{q^{n-1}} \sum_{\substack{p, 1 \\ p \neq q}}^{N} \frac{1}{p(p-q)}$.

Combining (4) through (7), we observe that
(8)

$$
\sum_{q=1}^{N} \sum_{p=1}^{N}\left\{\frac{1}{p^{2}} \cdot \frac{1}{q^{n-1}}+\frac{1}{p^{3}} \cdot \frac{1}{q^{n-2}}+\quad-\frac{1}{p^{n-1}} \frac{1}{q^{2}}\right\}
$$

$$
=(n-2) \sum_{q=1}^{N} \frac{1}{q^{n+1}}+2 \sum_{q=1}^{N} \frac{1}{q^{n-1}} \sum_{\substack{p=1 \\ p \neq q}}^{N} \frac{1}{p(p-q)}
$$

Now consider

$$
\begin{aligned}
-q \sum_{\substack{p=1 \\
p \neq q}}^{N} \frac{1}{p(p-q)} & =\sum_{\substack{p=1 \\
p \neq q}}^{N}\left(\frac{1}{p}-\frac{1}{p-q}\right) \\
& =\sum_{p=1}^{q-1} \frac{1}{q-p}-\sum_{p=q, 1}^{N} \frac{1}{p-q}+\sum_{p=1}^{N} \frac{1}{p}-\frac{1}{q} \\
& =\sum_{p=1}^{q-1} \frac{1}{p}-\sum_{p=1}^{N-q} \frac{1}{p}+\sum_{p=1}^{N} \frac{1}{p}-\frac{1}{q} \\
& =-\frac{1}{q}+\sum_{p=1}^{q-1} \frac{1}{p}+\sum_{p=N-q-1}^{N} \frac{1}{p}
\end{aligned}
$$

where we let $q-p=p^{\prime}$ and $p-q=p^{\prime}$ in the first and second summations of the second equalty respectively, and then dropping the prime on p we can easily get the third equality.

Setting (9) into (8) leads to

$$
\sum_{q=1}^{N} \sum_{p=1}^{N}\left\{\frac{1}{p^{2}} \cdot \frac{1}{q^{n-1}}+\frac{1}{p^{3}} \cdot \frac{1}{q^{n-2}}+\cdots+\frac{1}{p^{n-1}} \cdot \frac{1}{q^{2}}\right\}
$$

$$
\begin{equation*}
=n \sum_{q=1}^{N} \frac{1}{q^{n+1}}-2 \sum_{q=1}^{N} \frac{1}{q^{n}}\left(\sum_{k=1}^{q-1} \frac{1}{k}\right)-2 \sum_{q=1}^{N} \frac{1}{q^{n}}\left(\sum_{k=N-q+1}^{N} \frac{1}{k}\right) . \tag{10}
\end{equation*}
$$

We finally consider

$$
0 \leq \sum_{k=N-q+1}^{N} \frac{1}{k}=\frac{1}{N-q+1}+\frac{1}{N-q+2}+\cdots+\frac{1}{N} \leq \frac{q}{N-q+1},
$$

and so

$$
\begin{align*}
0 & <\sum_{q=1}^{N} \frac{1}{q^{n}}\left(\sum_{k=N-q+1}^{N} \frac{1}{k}\right)<\sum_{q=1}^{N} \frac{1}{q^{n-1}} \cdot \frac{1}{N-q+1} \\
& \leq \sum_{q=1}^{N} \frac{1}{q(N-q+1)} \quad(n \geq 2) \tag{11}\\
& =\frac{1}{N+1} \sum_{q=1}^{N}\left(\frac{1}{q}+\frac{1}{N-q+1}\right)=\frac{2}{N+1} \sum_{q=1}^{N} \frac{1}{q} \\
& <\frac{2}{N+1}(1+\log N) \rightarrow 0 \text { as } N \rightarrow \infty .
\end{align*}
$$

Taking the limit on (10) as $N \rightarrow \infty$ with (11) completes the proof of the identity (3).

An obvious special case of (3) when $n=2$ becomes

$$
\begin{equation*}
\zeta(3)=\sum_{n=1}^{\infty} \frac{1}{n^{2}}\left(\sum_{k=1}^{n-1} \frac{1}{k}\right) \tag{12}
\end{equation*}
$$

which was proven by many authors in various ways, among others. by Shen 5, p.1396: who proved by making use of the Stirling numbers and analyzing the well-known Gauss's summation theorem in the hypergeometric series ${ }_{2} F_{1}(a, b ; c ; z)$ (cf. Gauss [3!)

$$
\begin{equation*}
{ }_{2} \Gamma_{1}(a, b ; c ; 1)=\frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)} \quad(\Re(c-a-b)>0) \tag{13}
\end{equation*}
$$

where Γ is the familiar Gamma function whose Weierstrass canonical product form is:

$$
\begin{equation*}
\Gamma(z)=\frac{e^{-\gamma z}}{z} \prod_{n=1}^{\infty}\left(1+\frac{z}{n}\right)^{-1} e^{z / n} \tag{14}
\end{equation*}
$$

and γ denotes the Euler-Mascheroni constant defined by

$$
\begin{equation*}
\gamma:=\lim _{N \rightarrow \infty}\left(\sum_{k=: 1}^{N} \frac{1}{k}-\log N\right) \cong 0577215664901532 \tag{15}
\end{equation*}
$$

We conclude this note by proving, in order to illustrate the usefulness of the above-employed elementary technique. a known identity

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{\zeta(k)}{k 2^{k}}=\frac{1}{2} \log \pi-\frac{1}{2} \gamma \tag{16}
\end{equation*}
$$

which was shown by Choi and Srivastava (1, p. 109, Eq (2.21) who used the theory of the simple and double Gamma functions. First recall the Stirling's formula (see [6, p. 102. Entry (16.16)) :

$$
\begin{equation*}
\lim _{N \rightarrow \infty}\left\{2 \sum_{\ell=1}^{N} \log \ell-(2 N+1) \log N+2 N\right\}=\log (2 \pi) \tag{17}
\end{equation*}
$$

Now, starting with

$$
\begin{aligned}
S: & =\sum_{k=2}^{\infty} \frac{\zeta(k)}{k 2^{k}}=\sum_{\ell=1}^{\infty} \sum_{k=2}^{\infty} \frac{1}{k:} \frac{(2 \ell)^{k}}{N} \\
& =-\lim _{N \rightarrow \infty} \sum_{\ell=1}^{N}\left\{\frac{1}{2 \ell}+\log \left(1-\frac{1}{2 \ell}\right)\right\}
\end{aligned}
$$

where the Maclaurin series expansion of $\log (1-x)$ was used. By considering (15), we find that

$$
\begin{aligned}
S & :=-\frac{\gamma}{2}+\frac{1}{2} \lim _{N \rightarrow \infty}\left[2 \sum_{\ell=1}^{N} \log (2 \ell)-\log N-2 \sum_{\ell=1}^{N} \log (2 \ell-1)\right] \\
& =-\frac{\gamma}{2}+\frac{1}{2} \lim _{N \rightarrow \infty}\left[4 N \log 2-\log N+4 \sum_{\ell=1}^{N} \log \ell-2 \sum_{\ell=1}^{2 N} \log \ell\right]
\end{aligned}
$$

the limit part of which, in virtue of (17), can easily be seen to become $\log \pi$. This completes an elementary proof of (16).

References

[1] J. Choi and H. M. Srivastava, Sums associated with the Zeta functzon, J. Math. Anal Appl. 296 (1997), 103-120.
[2] A. Etdélyi, W. Magnus, F Oberhettinger and F. G Ticonii, Hıghet Transcendental Functions, Vol. I, McGraw-Hill Book Company, New York, Toronto and London, 1953
[3] C. F Gauss, Disquistiones generales curca sertem infintain..., Got tingen thesis (1812), Comment. Soc. Reg Sci. Gottingensis Recent. 2(1813) (Reprinted in Carl Fruedrich Gauss Werke, 12 vols, vol. 3, pp. 123-162 (see also pp. 207-230), Gottingen, 1870-1933).
[4] R. Sita Rama Chandra Rao and A. Siva Rama Sarma, Some identutees involvnng the Ruemann zeta function, Indian J. Pure appl. Math. 10(5) (1979), 602-607
[5] Li-Chien Shen, Remarks on some integrals and serves anwolung the Starling numbers and $\zeta(n)$, Trans Amer. Math Soc. 347(4) (1995), 1391•1399
[6] M. R Spiegel, Mathematacal Handbook, McGraw-Hill Book Company, New York, 1968.
[7] E. T. Whittaker and G. N Watson, A Course of Modern Analys.s (4th Ed.), Cambridge University Press, 1963.

Jinsook Kang
Department of Mathematics
Pusan National University
Pusan 607-735, Korea
E-manl: jiskang@hyowon.pusan.ac.kr

Junesang Choi

Department of Mathematics
Dongguk University
Kyongju 780-714, Korea
E-maul: junesang@mail.dongguk.ac.kr

[^0]: Received September 5 1999 Revised March 5. 2000
 1991 Mathomatics Subject Classification Primary 11 M06; Serondary 33C'05,
 Key words and phrases Riemarn zeta function, Gamma function, hypergeometric setles.

