• Title/Summary/Keyword: the Dirichlet functional

Search Result 24, Processing Time 0.024 seconds

On the critical maps of the dirichlet functional with volume constraint

  • Koh, Young-Mee
    • Bulletin of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.303-308
    • /
    • 1995
  • We consider a torus T, that is, a compact surface with genus 1 and $\Omega = D^2 \times S^1$ topologically with $\partial\Omega = T$, where $D^2$ is the open unit disk and $S^1$ is the unit circle. Let $\omega = (x,y)$ denote the generic point on T. For a smooth immersion $u : T \to R^3$, we define the Dirichlet functional by $$ E(u) = \frac{2}{1} \int_{T} $\mid$\nabla u$\mid$^2 d\omega $$ and the volume functional by $$ V(u) = \frac{3}{1} \int_{T} u \cdot u_x \Lambda u_y d\omege $$.

  • PDF

A Comparative Study between LSI and LDA in Constructing Traceability between Functional and Non-Functional Requirements

  • Byun, Sung-Hoon;Lee, Seok-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.7
    • /
    • pp.19-29
    • /
    • 2019
  • Requirements traceability is regarded as one of the important quality attributes in software requirements engineering field. If requirements traceability is guaranteed then we can trace the requirements' life throughout all the phases, from the customers' needs in the early stage of the project to requirements specification, deployment, and maintenance phase. This includes not only tracking the development artifacts that accompany the requirements, but also tracking backwards from the development artifacts to the initial customer requirements associated with them. In this paper, especially, we dealt with the traceability between functional requirements and non-functional requirements. Among many Information Retrieval (IR) techniques, we decided to utilize Latent Semantic Indexing (LSI) and Latent Dirichlet Allocation (LDA) in our research. Ultimately, we conducted an experiment on constructing traceability by using two techniques and analyzed the experiment results. And then we provided a comparative study between two IR techniques in constructing traceability between functional requirements and non-functional requirements.

NUMBER OF THE NONTRIVIAL SOLUTIONS OF THE NONLINEAR BIHARMONIC PROBLEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.18 no.2
    • /
    • pp.201-211
    • /
    • 2010
  • We investigate the number of the nontrivial solutions of the nonlinear biharmonic equation with Dirichlet boundary condition. We give a theorem that there exist at least three nontrivial solutions for the nonlinear biharmonic problem. We prove this result by the finite dimensional reduction method and the shape of the graph of the corresponding functional on the finite reduction subspace.

ASYMPTOTICS FOR SOLUTIONS OF THE GINZBURG-LANDAU EQUATIONS WITH DIRICHLET BOUNDARY CONDITIONS

  • Han, Jong-Min
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.1019-1043
    • /
    • 1998
  • In this paper we study some asymptotics for solutions of the Ginzburg-Landau equations with Dirichlet boundary conditions. We consider the solutions ( $u_{\in}$, $A_{\in}$) which minimize the Ginzburg-Landau energy functional $E_{\in}$(u, A). We show that the solutions ( $u_{\in$}$ , $A_{\in}$) converge to some ( $u_{*}$, $A_{*}$) in various norms as the coupling parameter $\in$longrightarrow0.ow0.

  • PDF

MEAN VALUES OF DERIVATIVES OF L-FUNCTIONS IN FUNCTION FIELDS: IV

  • Andrade, Julio;Jung, Hwanyup
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1529-1547
    • /
    • 2021
  • In this series, we investigate the calculation of mean values of derivatives of Dirichlet L-functions in function fields using the analogue of the approximate functional equation and the Riemann Hypothesis for curves over finite fields. The present paper generalizes the results obtained in the first paper. For µ ≥ 1 an integer, we compute the mean value of the µ-th derivative of quadratic Dirichlet L-functions over the rational function field. We obtain the full polynomial in the asymptotic formulae for these mean values where we can see the arithmetic dependence of the lower order terms that appears in the asymptotic expansion.

BIFURCATION PROBLEM FOR THE SUPERLINEAR ELLIPTIC OPERATOR

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.20 no.3
    • /
    • pp.333-341
    • /
    • 2012
  • We investigate the number of solutions for the superlinear elliptic bifurcation problem with Dirichlet boundary condition. We get a theorem which shows the existence of at least $k$ weak solutions for the superlinear elliptic bifurcation problem with boundary value condition. We obtain this result by using the critical point theory induced from invariant linear subspace and the invariant functional.

THE EXISTENCE OF THE SOLUTION OF ELLIPTIC SYSTEM APPLYING TWO CRITICAL POINT THEOREM

  • Nam, Hyewon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.53-64
    • /
    • 2018
  • This paper deals with the study of solutions for the elliptic system with jumping nonlineartity and growth nonlinearity and Dirichlet boundary condition. We apply the two critical point theorem when proving the existence of nontrivial solutions for the elliptic system. We define the energy functional associated to the elliptic system and prove that the functional has two critical values.

LOCAL EXISTENCE AND EXPONENTIAL DECAY OF SOLUTIONS FOR A NONLINEAR PSEUDOPARABOLIC EQUATION WITH VISCOELASTIC TERM

  • Nhan, Nguyen Huu;Nhan, Truong Thi;Ngoc, Le Thi Phuong;Long, Nguyen Thanh
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.1
    • /
    • pp.35-64
    • /
    • 2021
  • In this paper, we investigate an initial boundary value problem for a nonlinear pseudoparabolic equation. At first, by applying the Faedo-Galerkin, we prove local existence and uniqueness results. Next, by constructing Lyapunov functional, we establish a sufficient condition to obtain the global existence and exponential decay of weak solutions.

Existence, Blow-up and Exponential Decay Estimates for the Nonlinear Kirchhoff-Carrier Wave Equation in an Annular with Robin-Dirichlet Conditions

  • Ngoc, Le Thi Phuong;Son, Le Huu Ky;Long, Nguyen Than
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.4
    • /
    • pp.859-888
    • /
    • 2021
  • This paper is devoted to the study of a nonlinear Kirchhoff-Carrier wave equation in an annulus associated with Robin-Dirichlet conditions. At first, by applying the Faedo-Galerkin method, we prove existence and uniqueness results. Then, by constructing a Lyapunov functional, we prove a blow up result for solutions with a negative initial energy and establish a sufficient condition to obtain the exponential decay of weak solutions.