• Title/Summary/Keyword: the Beta integral and a known integral formula

Search Result 8, Processing Time 0.025 seconds

CERTAIN HYPERGEOMETRIC IDENTITIES DEDUCIBLE BY USING THE BETA INTEGRAL METHOD

  • Choi, Junesang;Rathie, Arjun K.;Srivastava, Hari M.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1673-1681
    • /
    • 2013
  • The main objective of this paper is to show how one can obtain eleven new and interesting hypergeometric identities in the form of a single result from the old ones by mainly employing the known beta integral method which was recently introduced and used in a systematic manner by Krattenthaler and Rao [6]. The results are derived with the help of a generalization of a well-known hypergeometric transformation formula due to Kummer. Several identities including one obtained earlier by Krattenthaler and Rao [6] follow as special cases of our main results.

SOME INTEGRAL TRANSFORMS AND FRACTIONAL INTEGRAL FORMULAS FOR THE EXTENDED HYPERGEOMETRIC FUNCTIONS

  • Agarwal, Praveen;Choi, Junesang;Kachhia, Krunal B.;Prajapati, Jyotindra C.;Zhou, Hui
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.591-601
    • /
    • 2016
  • Integral transforms and fractional integral formulas involving well-known special functions are interesting in themselves and play important roles in their diverse applications. A large number of integral transforms and fractional integral formulas have been established by many authors. In this paper, we aim at establishing some (presumably) new integral transforms and fractional integral formulas for the generalized hypergeometric type function which has recently been introduced by Luo et al. [9]. Some interesting special cases of our main results are also considered.

APPLICATION OF THE RELATION ASSOCIATED WITH 3F2 DUE TO THOMAE

  • KIM, YONG SUP;LEE, SEUNG WOO;SONG, HYEONG KEE;NAM, IN KYEONG
    • Honam Mathematical Journal
    • /
    • v.26 no.1
    • /
    • pp.133-136
    • /
    • 2004
  • By elementry manipulation of series together with summations of Gauss and $Saalsch\ddot{u}tz$, Exton deduced a new two term relation for the hypergeometric function $_3F_2(1)$. The aim of this paper is to derive Exton's result from Thomae's formula, together with two known integral formulas and the Euler's transformation for $_2F_1$.

  • PDF

Reduction Formulas for Srivastava's Triple Hypergeometric Series F(3)[x, y, z]

  • CHOI, JUNESANG;WANG, XIAOXIA;RATHIE, ARJUN K.
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.2
    • /
    • pp.439-447
    • /
    • 2015
  • Very recently the authors have obtained a very interesting reduction formula for the Srivastava's triple hypergeometric series $F^{(3)}$(x, y, z) by applying the so-called Beta integral method to the Henrici's triple product formula for the hypergeometric series. In this sequel, we also present three more interesting reduction formulas for the function $F^{(3)}$(x, y, z) by using the well known identities due to Bailey and Ramanujan. The results established here are simple, easily derived and (potentially) useful.

AN EXTENSION OF THE WHITTAKER FUNCTION

  • Choi, Junesang;Nisar, Kottakkaran Sooppy;Rahman, Gauhar
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.705-714
    • /
    • 2021
  • The Whittaker function and its diverse extensions have been actively investigated. Here we aim to introduce an extension of the Whittaker function by using the known extended confluent hypergeometric function 𝚽p,v and investigate some of its formulas such as integral representations, a transformation formula, Mellin transform, and a differential formula. Some special cases of our results are also considered.

ANALYSIS OF AN EXTENDED WHITTAKER FUNCTION AND ITS PROPERTIES

  • Nabiullah Khan;Saddam Husain;M. Iqbal Khan
    • Honam Mathematical Journal
    • /
    • v.45 no.2
    • /
    • pp.184-197
    • /
    • 2023
  • For the numerous uses and significance of the Whittaker function in the diverse research areas of mathematical sciences and engineering sciences, This paper aims to introduce an extension of the Whittaker function by using a new extended confluent hypergeometric function of the first kind in terms of the Mittag-Leffler function. We also drive various valuable results like integral representation, integral transform and derivative formula. Further, we also analyze specific known results as a particular case of the main result.

CERTAIN FORMULAS INVOLVING A MULTI-INDEX MITTAG-LEFFLER FUNCTION

  • Bansal, Manish Kumar;Harjule, P.;Choi, Junesang;Mubeen, Shahid;Kumar, Devendra
    • East Asian mathematical journal
    • /
    • v.35 no.1
    • /
    • pp.23-30
    • /
    • 2019
  • Since Mittag-Leffler introduced the so-called Mittag-Leffler function, a number of its extensions have been investigated due mainly to their applications in a variety of research subjects. Shukla and Prajapati presented a lot of formulas involving a generalized Mittag-Leffler function in a systematic manner. Motivated mainly by Shukla and Prajapati's work, we aim to investigate a generalized multi-index Mittag-Leffler function and, among possible numerous formulas, choose to present several formulas involving this generalized multi-index Mittag-Leffler function such as a recurrence formula, derivative formula, three integral transformation formulas. The results presented here, being general, are pointed out to reduce to yield relatively simple formulas including known ones.

A NEW EXTENSION OF THE MITTAG-LEFFLER FUNCTION

  • Arshad, Muhammad;Choi, Junesang;Mubeen, Shahid;Nisar, Kottakkaran Sooppy;Rahman, Gauhar
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.549-560
    • /
    • 2018
  • Since Mittag-Leffler introduced the so-called Mittag-Leffler function in 1903, due to its usefulness and diverse applications, a variety and large number of its extensions (and generalizations) and variants have been presented and investigated. In this sequel, we aim to introduce a new extension of the Mittag-Leffler function by using a known extended beta function. Then we investigate ceratin useful properties and formulas associated with the extended Mittag-Leffler function such as integral representation, Mellin transform, recurrence relation, and derivative formulas. We also introduce an extended Riemann-Liouville fractional derivative to present a fractional derivative formula for a known extended Mittag-Leffler function, the result of which is expressed in terms of the new extended Mittag-Leffler functions.