• Title/Summary/Keyword: textile composite

Search Result 262, Processing Time 0.023 seconds

The Scattering Property of EVA/SiO2 Composite Film Formed Micro-aggregation Structure for Roll-to-roll Process (Roll-to-roll 적용 가능한 마이크로 응집 구조를 갖는 EVA/SiO2 복합 필름의 산란 특성)

  • Jo, Kuk Hyun;Yang, Jun Yeong;Lee, Si Woo;Park, Eun Kyoung;Choi, Geun Seok;Song, Ki Won;Kim, Hyo Jung
    • Textile Coloration and Finishing
    • /
    • v.30 no.3
    • /
    • pp.190-198
    • /
    • 2018
  • We fabricated high transmission and high scattering poly(ethylene-co-vinyl acetate)(EVA) films embedding $SiO_2$ nanoparticles to improve outcoupling efficiency in organic display. The 800nm diameter $SiO_2$ nanoparticles aggregated and formed $1.56{\mu}m$ (with ${\pm}0.853{\mu}m$ standard deviation) diameter microparticles in EVA. The total transmission of scattering film was 83.3% on Polyethylene terephthalate(PET), which was higher than reference 82.8% PET substrate. The diffuse transmission and haze of the $SiO_2$ embedded EVA film were 76.1% and 91.4%, respectively. The optimized condition was 1:1 weight ratio of $SiO_2$ nanoparticles to EVA in Tetrahydrofuran(THF) solution. When the ratio of $SiO_2$ was larger than 1, the total transmission decreased by the increase in backscattering of light due to high scattering. With the optimized condition, we could succeed to fabricate a large scale film(35m in length) with a roll-to-roll process.

Impact Properties of Organic Fiber Reinforced Thermoplastic Composites (유기섬유강화 열가소성고분자 복합재료의 충격특성)

  • Im, Seung-Soon;Lee, Seung-Bae;Lee, Yong-Moo;Choi, Hyeong-Ki
    • Applied Chemistry for Engineering
    • /
    • v.7 no.3
    • /
    • pp.424-432
    • /
    • 1996
  • The fiber reinforced thermoplastic composites(FRTP) were prepared with polypropylene fiber(PPF) as matrix and vinylon(VF), Aramid(KF) or nylon fiber(PAF) as reinforcing materials using the integrated fiber mixing apparatus. The composite sheets were prepared by compression molding and their impact and morphological properties were characterized. VF/PP system showed the maximum value in Izod impact strength, while KF/PP system showed the maximum value in high rate impact properties. Ductility Index(DI) order was VF/PP>KF/PP>PAF/PP. A maximum DI for VF/PP, 2.43, was obtained when the weight fraction of VF was 20%. The optimum amount of the reinforcing organic fiber was found to be 20~30%. As a result, it is concluded that VF/PP system has better interfacial adhesion properties than either KF/PP or PAF/PP.

  • PDF

Manufacturing and Characterization of PVDF/TiO2 Composite Nano Web with Improved β-phase (β-phase가 향상된 PVDF/TiO2 Nano Web 제조 및 특성 분석)

  • Bae, Sung Jun;Kim, Il Jin;Lee, Jae Yeon;Sur, Suk-Hun;Choi, Pil Jun;Sim, Jae Hak;Lee, Seung Geol;Ko, Jae Wang
    • Textile Coloration and Finishing
    • /
    • v.32 no.3
    • /
    • pp.167-175
    • /
    • 2020
  • In this study, the optimum conditions for manufacturing PVDF nano web according to various electrospinning conditions such as solution concentration and applied voltage conditions were confirmed. The optimum spinning conditions were studied by analyzing the changes in the radioactivity of PVDF/TiO2 nano web according to the TiO2 content and the content of β-phase closely related to the piezoelectric properties under established conditions. As a result, it was confirmed that the concentration of the spinning solution was 20 wt%, the applied voltage was 25 kV, and the TiO2 content was 5 phr. PVDF nano web and PVDF/TiO2 nano web were observed morphologies through Scanning Electron Microscope(SEM) analysis. Formation of β-phase by electrospinning was confirmed by Fourier transform infrared spectroscopy(FT-IR) and X-ray Diffractometer(XRD), and the effect of the trapped nano web structure on the piezoelectric properties was investigated.

Evaluation of Mechanical and Vibration Characteristics of Laminated Damping Aluminum Panel for Automobile Components (자동차 부품용 알루미늄 접합 제진 패널의 기계적 특성 및 진동 특성 평가)

  • Bae, Sung-Youl;Bae, Ki-Man;Kim, Yun-Hae
    • Composites Research
    • /
    • v.32 no.2
    • /
    • pp.113-119
    • /
    • 2019
  • The objective of this research is to study the mechanical and vibration characteristics of vibration damping aluminum panels for automotive parts. For this purpose, the test and simulation results of aluminum-resin hybrid materials and aluminum sheet materials were compared. Tensile strength and elastic modulus of the hybrid material were approximately 10% lower than aluminum sheet. Also, it was showed that the hybrid material have lower natural frequency than aluminum sheet, and it was confirmed that loss factor increases as the thickness of resin increases. Finally, it is confirmed that the test results and the analysis results are similar with each other and the performance prediction of the materials are possible by FEA.

Stretchable Sensor Array Based on Lead-Free Piezoelectric Composites Made of BaTiO3 Nanoparticles and Polymeric Matrix (BaTiO3 압전나노입자와 폴리머로 제작된 비납계 압전복합체의 스트레쳐블 압전 센서 어레이로의 적용 연구)

  • Bae, Jun Ho;Ham, Seong Su;Park, Sung Cheol;Park, and Kwi-Il
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.312-317
    • /
    • 2022
  • Piezoelectric energy harvesting has attracted increasing attention over the last decade as a means for generating sustainable and long-lasting energy from wasted mechanical energy. To develop self-powered wearable devices, piezoelectric materials should be flexible, stretchable, and bio-eco-friendly. This study proposed the fabrication of stretchable piezoelectric composites via dispersing perovskite-structured BaTiO3 nanoparticles inside an Ecoflex polymeric matrix. In particular, the stretchable piezoelectric sensor array was fabricated via a simple and cost-effective spin-coating process by exploiting the piezoelectric composite comprising of BaTiO3 nanoparticles, Ecoflex matrix, and stretchable Ag coated textile electrodes. The fabricated sensor generated an output voltage of ~4.3 V under repeated compressing deformations. Moreover, the piezoelectric sensor array exhibited robust mechanical stability during mechanical pushing of ~5,000 cycles. Finite element method with multiphysics COMSOL simulation program was employed to support the experimental output performance of the fabricated device. Finally, the stretchable piezoelectric sensor array can be used as a self-powered touch sensor that can effectively detect and distinguish mechanical stimuli, such as pressing by a human finger. The fabricated sensor demonstrated potential to be used in a stretchable, lead-free, and scalable piezoelectric sensor array.

Optimization of Coal Ash Water Treatment Conditions to Suppress Concrete Pop-out Based on Coal Ash Containing Expansion Components (팽창성분이 혼입된 석탄재 기반 콘크리트의 팝아웃 발생 억제를 위한 석탄재 수처리 조건 최적화)

  • Jae-Jin Hong;Joo-Han Kang;Mi-Na Kim;Woo-Seong Choi;Myung-Jun Oh;Seong-Yun Kim
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.226-231
    • /
    • 2024
  • Coal ash has been used as a sand replacement in the construction industry. Due to the use of bituminous coal as a result of anthracite depletion, and quicklime as an air purifier in the desulfurization process, pop-out defects have recently occurred in concrete using coal ash, severely limiting the recycling of coal ash into concrete. In this study, the components that cause the pop-out problem of the coal ash filled concrete were identified and a pretreatment method to fully expand the expansive components in advance was proposed as a solution to this problem. By treating water twice for 10 min, allowing the CaO mixed in the coal ash to fully expand, the problems of pop-out and reduced compressive strength of the concrete were overcome. The cost and time efficient water treatment method proposed in this study is expected to promote the recycling of coal ash into concrete.

Assessment of Wicking and Fast Dry Properties According to Moisture Transport Measurement Method of Knit and Woven Fabrics for Garment (의류소재용 직·편물의 수분이동 특성 측정 방법에 따른 흡한속건성 평가)

  • Kim, Hyun-ah;Kim, Seung-jin
    • Science of Emotion and Sensibility
    • /
    • v.20 no.2
    • /
    • pp.117-126
    • /
    • 2017
  • In this study, moisture transport characteristics for the woven and knitted fabrics made of 8 kinds of fiber materials using MMT (moisture management tester) were measured and discussed with the Bireck bt MMT and water evaporating rate (WER) measuring methods, which are vertical moisture transport methods. In addition, the drying property by MMT of the eight kinds of specimens was compared and discussed with the results measured by the vertical drying measurement. MMT experimental result which is horizental moisture transport appeared to be similar to the result of the Bireck method, which is the vertical moisture transport experiment. Absortion time measured from drip method of the fabrics made of the bamboo, linen, and cotton/nylon composite fabrics was short and thus they showed best wicking property, which was attributed to the low contact angle on the fabric surface and high porosity of the fabrics due to the staple yarn structure composed of the hydrophilic staple fibers. In drying property of the fabric specimens by MMT, maximum absorption radius of the dry-zone knit and bamboo woven fabrics were the highest and they showed the best drying property, which was a little different result compared with vertical drying measurement method. Half time of the drying rate in the MMT method was highly correlated with the fabric thickness and saturated moisture absortion rate and their regression coefficients were 0.9 and 0.88, respectively. This means that the knitted and woven fabric design technology for retaining good wicking and drying properties of the fabrics with thin fabric thickness is very important for obtaining high functional wear comfort fabrics. In addition, wicking and drying properties of the fabrics made of different fiber materials and with different yarns and fabric structures showed different results according to the measuring methods.

Empirical Study on Effects of Disk Shape Filler Content and Orientation on Thermal Expansion Coefficient of PP Composites (판상형 충전제의 함량과 배향에 따른 PP복합체의 열팽창계수 영향 연구)

  • Lee, Yong-Hyun;Jeoung, Sun-Kyoung;Hwang, Hyo-Yeon;Lee, Seung-Goo;Lee, Kee-Yoon
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.281-286
    • /
    • 2012
  • Experimental study was performed regarding the effects of disc-like filler orientation and contents on the coefficient of thermal expansion (CTE) of polypropylene composites using the three dimensional ellipsoids ($a_1$ > $a_2$ > $a_3$) analyzed by two aspect ratios(${\rho}_{\alpha}=a_1/a_3$and ${\rho}_{\beta}=a_1/a_2$). Measured data were compared with the theoretical approaches proposed by Lee et al. Mica and talc were useed as disk-like fillers in the composites. As experimental results, ${\alpha}_{11}/{\alpha}_m$ decreased down to ca. 0.56 with mica content of 20 wt% and the aspect ratios, ${\rho}_{\alpha}=13.5$, ${\rho}_{\beta}=1.8$. However, ${\alpha}_{33}/{\alpha}_m$ increased to more than 1. In the case of talc, ${\alpha}_{11}/{\alpha}_m$ decreased to ca. 0.63 with 20 wt% and ${\rho}_{\alpha}=3.7$, ${\rho}_{\beta}=1.4$. Finally, the longitudinal CTEs (${\alpha}_{11}$) of polypropylene composites decreased as filler contents increased, but normal CTE (${\alpha}_{33}$) increased in the low filler contents like the theory.

Empirical Study on the Effects of the Content and the Orientation of the Disk Shape Fillers on the Modulus of PP Composites (판상형 충전제의 함량과 배향에 따른 PP복합체의 영률 변화 연구)

  • Seo, Sang-Bum;Lee, Yong-Hyun;Jeoung, Sun-Kyoung;Lee, Seung-Goo;Lee, Kee-Yoon
    • Polymer(Korea)
    • /
    • v.36 no.2
    • /
    • pp.229-234
    • /
    • 2012
  • This paper studied the effects of the content and the orientation of the disk shape fillers on the modulus of PP composites. The experimental results were compared with the theoretical calculations which included the three dimensional ellipsoids and analyzed by two aspect ratios, ${\rho}_{\alpha}=a_1/a_3$and ${\rho}_{\beta}=a_1/a_2$proposed by Lee and his researchers. Mica and talc were used as disk shape fillers in the composites. The shapes of mica and talc were observed by SEM and aspect ratios were statistically calculated. For the case of mica, the average aspect ratios were ${\rho}_{\alpha}=13.5$ and ${\rho}_{\beta}=1.8$, and for the case of talc, they were ${\rho}_{\alpha}=3.8$ and ${\rho}_{\beta}=1.4$. Also, the effects of two aspect ratios and the content of filler on the mechanical properties were studied: For 30 wt% of mica, $E_{11}$ increased up to about 2.7 times, and for the other case of talc, $E_{11}$ increased up to about 2.3 times, respectively.

A Study on the Application of Composites to Pipe Support Clamps for the Light-weight LNGC (LNGC 경량화를 위한 파이프 지지용 클램프의 복합소재 적용 연구)

  • Bae, Kyong-Min;Yim, Yoon-Ji;Yoon, Sung-Won;Ha, Jong-Rok;Cho, Je-Hyoung
    • Composites Research
    • /
    • v.34 no.1
    • /
    • pp.8-15
    • /
    • 2021
  • In the shipbuilding and marine industry, as a technology for reducing the weight of parts to reduce energy and improve operational efficiency of ships is required, a method of applying fibers-reinforced composites which is high-strength lightweight materials, as part materials can be considered. In this study, the possibility of applying fibers-reinforced composites to the pipe support clamps was evaluated to reduce the weight of LNGC. The fibers-reinforced composites were manufactured using carbon fibers and glass fibers as reinforcing fibers. Through the computer simulation program, the properties of the reinforcing materials and the matrix materials of the composites were inversely calculated, and the performance prediction was performed according to the change in the properties of each fiber lamination pattern. In addition, the structural analysis of the clamps according to the thickness of the composites was performed through the finite element analysis program. As a result of the study, it was confirmed that attention is needed in selecting the thickness when applying the fibers-reinforced composites of the clamp for weight reduction. It is considered that it will be easy to change the shape of the structure and change the structure for weight reduction in future supplementary design.