DOI QR코드

DOI QR Code

BaTiO3 압전나노입자와 폴리머로 제작된 비납계 압전복합체의 스트레쳐블 압전 센서 어레이로의 적용 연구

Stretchable Sensor Array Based on Lead-Free Piezoelectric Composites Made of BaTiO3 Nanoparticles and Polymeric Matrix

  • 배준호 (경북대학교 신소재공학부) ;
  • 함성수 (경북대학교 신소재공학부) ;
  • 박성철 (경북대학교 신소재공학부) ;
  • 박귀일 (경북대학교 신소재공학부)
  • Bae, Jun Ho (School of Materials Science and Engineering, Kyungpook National University) ;
  • Ham, Seong Su (School of Materials Science and Engineering, Kyungpook National University) ;
  • Park, Sung Cheol (School of Materials Science and Engineering, Kyungpook National University) ;
  • Park, and Kwi-Il (School of Materials Science and Engineering, Kyungpook National University)
  • 투고 : 2022.07.01
  • 심사 : 2022.09.27
  • 발행 : 2022.09.30

초록

Piezoelectric energy harvesting has attracted increasing attention over the last decade as a means for generating sustainable and long-lasting energy from wasted mechanical energy. To develop self-powered wearable devices, piezoelectric materials should be flexible, stretchable, and bio-eco-friendly. This study proposed the fabrication of stretchable piezoelectric composites via dispersing perovskite-structured BaTiO3 nanoparticles inside an Ecoflex polymeric matrix. In particular, the stretchable piezoelectric sensor array was fabricated via a simple and cost-effective spin-coating process by exploiting the piezoelectric composite comprising of BaTiO3 nanoparticles, Ecoflex matrix, and stretchable Ag coated textile electrodes. The fabricated sensor generated an output voltage of ~4.3 V under repeated compressing deformations. Moreover, the piezoelectric sensor array exhibited robust mechanical stability during mechanical pushing of ~5,000 cycles. Finite element method with multiphysics COMSOL simulation program was employed to support the experimental output performance of the fabricated device. Finally, the stretchable piezoelectric sensor array can be used as a self-powered touch sensor that can effectively detect and distinguish mechanical stimuli, such as pressing by a human finger. The fabricated sensor demonstrated potential to be used in a stretchable, lead-free, and scalable piezoelectric sensor array.

키워드

과제정보

본 연구는 2022년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원(No.2021R1A4A2001658, No.2022R1A2C1003853)을 받아 수행되었습니다.

참고문헌

  1. L. M. Swallow, J. K. Luo, E. Siores, I. Patel, and D. Dodds, "A piezoelectric fibre composite based energy harvesting device for potential wearable applications", Smart Mater. Struct., Vol. 17, No. 2, p. 025017, 2008. https://doi.org/10.1088/0964-1726/17/2/025017
  2. T. Kim and I. Park, "Skin-interfaced Wearable Biosensors: A Mini-Review", J. Sens. Sci. Technol., Vol. 31, No. 2, pp. 71-78, 2022. https://doi.org/10.46670/JSST.2022.31.2.71
  3. C. Erdmier, J. Hatcher, and M. Lee, "Wearable device implications in the healthcare industry", J. Med. Eng. Technol., Vol. 40, No. 4, pp. 141-148, 2016. https://doi.org/10.3109/03091902.2016.1153738
  4. Y. Jung and H. Cho, "Flexible pressure sensors based on three-dimensional structure for high sensitivity", J. Sens. Sci. Technol., Vol. 31, No. 3, pp.145-150, 2022. https://doi.org/10.46670/JSST.2022.31.3.145
  5. C. K. Jeong, J. Lee, S. Han, J. Ryu, G.-T. Hwang, D. Y. Park, J. H. Park, S. S. Lee, M. Byun, S. H. Ko, and K. J. Lee, "A hyper-stretchable elastic-composite energy harvester", Adv Mater., Vol. 27, No. 18, pp. 2866-2875, 2015. https://doi.org/10.1002/adma.201500367
  6. H.-T. Deng, X.-R. Zhang, Z.-Y. Wang, D.-L. Wen, Y.-Y. Ba, B. Kim, M.-D. Han, H.-X. Zhang, and X.-S. Zhang, "Super-stretchable multi-sensing triboelectric nanogenerator based on liquid conductive composite", Nano Energy, Vol. 83, p. 103948, 2021.
  7. B.-U. Hwang, A. Zabeeb, T. Q. Trung, L. Wen, J. D. Lee, Y.-I. Choi, H.-B. Lee, J. H. Kim, J. G. Han, and N.-E. Lee, "A transparent stretchable sensor for distinguishable detection of touch and pressure by capacitive and piezoresistive signal transduction", NPG Asia Mater., Vol. 11, No. 1, pp. 1-12, 2019. https://doi.org/10.1038/s41427-018-0100-z
  8. G.-T. Hwang, V. Annapureddy, J. H. Han, D. J. Joe, C. Baek, D. Y. Park, D. H. kim, J. H. Park, C. K. Jeong, K.-I. Park, J.-J. Choi, D. K. Kim, J. Ryu, and K. J. Lee, "Self-powered wireless sensor node enabled by an aerosol-deposited PZT flexible energy harvester", Adv Energy Mater., Vol. 6, No, 13, p.1600237, 2016. https://doi.org/10.1002/aenm.201600237
  9. S. S. Ham, G.-J. Lee, D. Y. Hyeon, Y.-G. Kim, Y.-W. Lim, M.-K. Lee, J.-J. Park, G.-T. Hwang, S. Yi, C. K. Jeong, and K.-I. Park, "Kinetic motion sensors based on flexible and lead-free hybrid piezoelectric composite energy harvesters with nanowires-embedded electrodes for detecting articular movements", Composites Part B, Vol. 212, p.108705, 2021. https://doi.org/10.1016/j.compositesb.2021.108705
  10. S. Y. Lee and Y. Choi, "Piezoelectric energy harvesting principles and materials", Polym. Sci. Technol., Vol. 31, No. 6, pp. 484-489, 2020.
  11. J. H. Han, K.-I. Park, and C. K. Jeong, "Dual-structured flexible piezoelectric film energy harvesters for effectively integrated performance", Sensors, Vol. 19, No. 6, p. 1444, 2019. https://doi.org/10.3390/s19061444
  12. C. K. Jeong, D. Y. Hyeon, G.-T. Hwang, G.-J. Lee, M.-K. Lee, J.-J. Park, and K.-I. Park, "Nanowire-percolated piezoelectric copolymer-based highly transparent and flexible self-powerd sensors", J. Mater. Chem. A, Vol. 7, No. 44, pp. 25481-25489, 2019. https://doi.org/10.1039/C9TA09864J
  13. D. Y. Hyeon and K.-I. Park, "Piezoelectric flexible energy harvester based on BaTiO3 thin film enabled by exfoliating the Mica substrate", Energy Technol., Vol. 7, No. 10, p. 1900638, 2019. https://doi.org/10.1002/ente.201900638
  14. K.-I. Park, J. H. Son, G.-T. Hwang, C. K. Jeong, J. Ryu, M. Koo, I. Choi, S. H. Lee, M. Byun, Z. L. Wang, and K. J. Lee, "Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates", Adv. Mater., Vol. 26, No. 16, pp. 2514-2520, 2014. https://doi.org/10.1002/adma.201305659
  15. K.-I. Park, S. Xu, Y. Liu, G.-T. Hwang, S.-J. Kang, Z. L. Wang, and K. J. Lee, "Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates", Nano Lett., Vol. 10, No. 12, pp. 4939-4943, 2010. https://doi.org/10.1021/nl102959k
  16. S. C. Park, J. H. Lee, Y.-G. Kim, and K.-I. Park, "Flexible energy harvesting device based on hybrid piezoelectric nanocomposite made of lead-free BCTZ ceramic and piezopolymer", J. Korean Inst. Electr. Electron. Mater. Eng., Vol. 35, No. 1, pp. 72-79, 2022.
  17. Y. J. Kwon, D. Y. Hyeon, and K.-I. Park, "Flexible energy harvester made of organic-inorganic hybrid piezoelectric nanocomposite", Korean J. Mater. Res., Vol. 29, No. 6, pp. 371-377, 2019. https://doi.org/10.3740/MRSK.2019.29.6.371
  18. K.-I. Park, M. Lee, Y. Liu, S. Moon, G.-T. Hwang, G. Zhu, J. E. Kim, S. O. Kim, D. K. Kim, Z. L. Wang, and K. J. Lee, "Flexible nanocomposite generator made of batio3 nanoparticles and graphitic carbons", Adv. Mater., Vol. 24, No. 22, pp. 2999-3004, 2012. https://doi.org/10.1002/adma.201200105
  19. W. J. Lee, S.-Y. Park, H. J. Nam, and S.-H. Choa, "Mechanical and optical characteristics of transparent stretchable hybrid substrate using PDMS and ecoflex material", J. Microelectron. Packag. Soc., Vol. 25, No. 4, pp. 129-135, 2018.
  20. D. Y. Hyeon and K.-I. Park, "A comparison study of output performance of organic-inorganic piezoelectric nanocomposite made of piezoelectric/non-piezoelectric polymers and BaTiO3 nanoparticles", J. Korean Powder Metall. Inst., Vol. 26, No. 2, pp. 119-125, 2019. https://doi.org/10.4150/KPMI.2019.26.2.119
  21. I. Pasuk, F. Neatu, S. Neatu, M. Florea, C. M. Istrate, I. Pintilie, and L. Pintilie, "Structural details of BaTiO3 Nanopowders deduced from the anisotropic XRD peak broadening", Nanomaterials, Vol. 11, No. 5, p. 1121, 2021. https://doi.org/10.3390/nano11051121