Browse > Article
http://dx.doi.org/10.7317/pk.2012.36.3.281

Empirical Study on Effects of Disk Shape Filler Content and Orientation on Thermal Expansion Coefficient of PP Composites  

Lee, Yong-Hyun (Department of Polymer Science and Engineering, Chungnam National University)
Jeoung, Sun-Kyoung (Korea Automotive Technology Institute)
Hwang, Hyo-Yeon (Department of Polymer Science and Engineering, Chungnam National University)
Lee, Seung-Goo (Department of Advanced Organic Materials & Textile System Engineering, Chungnam National University)
Lee, Kee-Yoon (Department of Polymer Science and Engineering, Chungnam National University)
Publication Information
Polymer(Korea) / v.36, no.3, 2012 , pp. 281-286 More about this Journal
Abstract
Experimental study was performed regarding the effects of disc-like filler orientation and contents on the coefficient of thermal expansion (CTE) of polypropylene composites using the three dimensional ellipsoids ($a_1$ > $a_2$ > $a_3$) analyzed by two aspect ratios(${\rho}_{\alpha}=a_1/a_3$and ${\rho}_{\beta}=a_1/a_2$). Measured data were compared with the theoretical approaches proposed by Lee et al. Mica and talc were useed as disk-like fillers in the composites. As experimental results, ${\alpha}_{11}/{\alpha}_m$ decreased down to ca. 0.56 with mica content of 20 wt% and the aspect ratios, ${\rho}_{\alpha}=13.5$, ${\rho}_{\beta}=1.8$. However, ${\alpha}_{33}/{\alpha}_m$ increased to more than 1. In the case of talc, ${\alpha}_{11}/{\alpha}_m$ decreased to ca. 0.63 with 20 wt% and ${\rho}_{\alpha}=3.7$, ${\rho}_{\beta}=1.4$. Finally, the longitudinal CTEs (${\alpha}_{11}$) of polypropylene composites decreased as filler contents increased, but normal CTE (${\alpha}_{33}$) increased in the low filler contents like the theory.
Keywords
coefficient of thermal expansion; aspect ratio; composite; PP; filler;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 K. Y. Lee, K. H. Kim, S. K. Jeoung, S. I. Ju, J. H. Shim, N. H. Kim, S. G. Lee, S. M. Lee, J. K. Lee, and D. R. Paul, Polymer, 48, 4174 (2007).   DOI   ScienceOn
2 K. Y. Lee, S. R. Hong, S. K Jung, N. H. Kim, S. G. Lee, and D. R. Paul, Polymer, 49, 2146 (2008).   DOI   ScienceOn
3 J. M. Kim, S. K. Jung, J. H. Shim, H. Y. Hwang, and K. Y. Lee, Polymer(Korea), 34, 346 (2010).
4 H. Y. Hwang, S. K. Jung, J. H. Shim, J. M. Kim, and K. Y. Lee, Polymer(Korea), 34, 352 (2010).
5 S. B. Seo, Y. H. Lee, S. K. Jung, S. G. Lee, and K. Y. Lee, Polymer(Korea), 36, 229 (2012).
6 T. Mura, Micromechanics of Defects in Solids, 2nd Ed., The Hague, Martinus Nijhoff, p 74 (1987).
7 C. L. Tucker and E. Liang, Compos. Sci. Technol., 59, 655 (1999).   DOI   ScienceOn
8 P. J. Yoon, T. D. Fornes, and D. R. Paul, Polymer, 43, 6727 (2002).   DOI   ScienceOn
9 P. J. Yoon, T. D. Fornes, and D. R. Paul, Polymer, 43, 6727 (2002).   DOI   ScienceOn
10 H. S. Lee, P. D. Fasulo, W. R. Eodgers, and D. R. Paul, Polymer, 46, 11673 (2005).   DOI   ScienceOn
11 D. V. Howe and J. E. Mark, Polymer Data Handbook, Oxford University Press, 1998.
12 G. Mavko, T. Mukerji, and J. Dvorkin, The Rock Physics Handbook, Cambridge University Press, Cambridge, 1998.
13 J. D. Eshelby, Proc. Roy. Soc. Lond., A241, 376 (1957).
14 R. Hill, J. Mech. Phys. Solids, 12, 199 (1964).   DOI   ScienceOn
15 T. Mori and K. Tanaka, Acta Metall., 21, 571 (1963).
16 J. C. Halpin, Primer on Composite Materials Analysis, Technomic Pub. Co. Inc., Lancaster, 1992.
17 K. Wakashima, M. Otsuka, and S. Umekawa, J. Compos. Mater., 8, 391 (1974).   DOI   ScienceOn
18 J. M. Margolis, Advanced Thermoset Composites Industrial and Commercial Applications, Van Nostrand Reinhold Co., NY, 1986.
19 G. P. Tandon and G. J. Weng, Polym. Compos., 5, 327 (1984).   DOI   ScienceOn
20 R. A. Schapery, J. Compos. Mater., 2, 380 (1968).   DOI
21 K.Y. Lee and D. R. Paul, Polymer, 46, 9064 (2005).   DOI   ScienceOn