DOI QR코드

DOI QR Code

The Scattering Property of EVA/SiO2 Composite Film Formed Micro-aggregation Structure for Roll-to-roll Process

Roll-to-roll 적용 가능한 마이크로 응집 구조를 갖는 EVA/SiO2 복합 필름의 산란 특성

  • Jo, Kuk Hyun (Department of Organic Materials Science and Engineering, Pusan National University) ;
  • Yang, Jun Yeong (Department of Organic Materials Science and Engineering, Pusan National University) ;
  • Lee, Si Woo (Department of Organic Materials Science and Engineering, Pusan National University) ;
  • Park, Eun Kyoung (Department of Organic Materials Science and Engineering, Pusan National University) ;
  • Choi, Geun Seok (Department of Organic Materials Science and Engineering, Pusan National University) ;
  • Song, Ki Won (Department of Organic Materials Science and Engineering, Pusan National University) ;
  • Kim, Hyo Jung (Department of Organic Materials Science and Engineering, Pusan National University)
  • 조국현 (부산대학교 유기소재시스템공학과) ;
  • 양준영 (부산대학교 유기소재시스템공학과) ;
  • 이시우 (부산대학교 유기소재시스템공학과) ;
  • 박은경 (부산대학교 유기소재시스템공학과) ;
  • 최근석 (부산대학교 유기소재시스템공학과) ;
  • 송기원 (부산대학교 유기소재시스템공학과) ;
  • 김효정 (부산대학교 유기소재시스템공학과)
  • Received : 2018.07.31
  • Accepted : 2018.09.05
  • Published : 2018.09.27

Abstract

We fabricated high transmission and high scattering poly(ethylene-co-vinyl acetate)(EVA) films embedding $SiO_2$ nanoparticles to improve outcoupling efficiency in organic display. The 800nm diameter $SiO_2$ nanoparticles aggregated and formed $1.56{\mu}m$ (with ${\pm}0.853{\mu}m$ standard deviation) diameter microparticles in EVA. The total transmission of scattering film was 83.3% on Polyethylene terephthalate(PET), which was higher than reference 82.8% PET substrate. The diffuse transmission and haze of the $SiO_2$ embedded EVA film were 76.1% and 91.4%, respectively. The optimized condition was 1:1 weight ratio of $SiO_2$ nanoparticles to EVA in Tetrahydrofuran(THF) solution. When the ratio of $SiO_2$ was larger than 1, the total transmission decreased by the increase in backscattering of light due to high scattering. With the optimized condition, we could succeed to fabricate a large scale film(35m in length) with a roll-to-roll process.

Keywords

References

  1. T. Yamasaki, K. Sumioka, and T. Tsutsui, Organic Light-Emitting Device with an Ordered Monolayer of Silica Microspheres as a Scattering Medium, Applied Physics Letters, 76(10), 1243(2000). https://doi.org/10.1063/1.125997
  2. J. J. Shiang, T. J. Faircloth, and A. R. Duggal, Experimental Demonstration ofIncreased Organic Light Emitting Device Output via Volumetric Light Scattering, J. of Applied Physics, 95(5), 2889(2004). https://doi.org/10.1063/1.1644038
  3. M. K. Wei and I. L. Su, Method to Evaluate the Enhancement of Luminance Efficiency in Planar Oled Light Emitting Devicesfor Microlens Array, Optics Express, 12(23), 5777(2004). https://doi.org/10.1364/OPEX.12.005777
  4. J. Lim, S. S. Oh, D. Y. Kim, S. H. Cho, I. T. Kim, S. H. Han, H. Takezoe, E. H. Choi, G. S. Cho, Y. H. Seo, S. O. Kang, and B. Park, Enhanced Out-coupling Factor of Microcavity Organic Light-Emitting Devices with Irregular Microlens Array, Optics Express, 14(14), 6564(2006). https://doi.org/10.1364/OE.14.006564
  5. F. Li, X. Li,J. Zhang, and B. Yang, Enhanced Light Extraction from Organic Light-Emitting Devices by Using Microcontact Printed Silica Colloidal Crystals, Organic Electronics, 8(5), 635(2007). https://doi.org/10.1016/j.orgel.2007.06.001
  6. N. Nakamura, N. Fukumoto, N. Wada, and M. Ohgawara, Light Extraction Analysis of Organic Light Emitting Diodes Fabricated on High Refractive Index Glass Scattering Layer, J. of Applied Physics, 117(5), 055502(2015). https://doi.org/10.1063/1.4907396
  7. K. H. Kim and S. Y. Park, Enhancing Light-extraction Efficiency of Oleds with High-and Low-refractive-index Organic-inorganic Hybrid Materials, Organic Electronics, 36, 103(2016). https://doi.org/10.1016/j.orgel.2016.05.039
  8. T. Nakamura, H. Fujii, N. Juni, and N. Tsutsumi, Enhanced Coupling of Lightfrom Organic Electroluminescent Device Using Diffusive Particle Dispersed High Refractive Index Resin Substrate, Optical Review, 13(2), 104(2006). https://doi.org/10.1007/s10043-006-0104-8
  9. R. Bathelt, D. Buchhauser, C. Garditz, R. Paetzold, and P. Wellmann, Light Extraction from Oleds for Lighting Applications through Light Scattering, Organic Electronics, 8(4), 293(2007). https://doi.org/10.1016/j.orgel.2006.11.003
  10. J. Lee, Y. Y. Kwon, E. H. Choi, J. Park, H. Yoon, and H. Kim, Enhancement of Light-extraction Efficiency of Organic Light-emitting Diodes Using Silica Nanoparticles Embedded in $TiO_2$ Matrices, Optics Express, 22(103), A705(2014). https://doi.org/10.1364/OE.22.00A705
  11. M. Harada, H. Wakana, S. Nobuki, H. Sakuma, M. Kawasaki, and S. Aratani, Characterization of Light Extraction Efficiency for Woleds with Light-out-coupling Layer, J. of the Society for Information Display, 23(1), 1(2015). https://doi.org/10.1002/jsid.296
  12. J. Hegmann, R. Jahn, S. Schonau, N. Sommer, and P. Lobmann, $SiO_2-TiOv$ Scattering Layers Prepared by Sol-Gel Processing for Light Management in Thin Film Solar Cells, J. of Sol-Gel Science and Technology, 74(3), 585(2015). https://doi.org/10.1007/s10971-015-3637-0
  13. T. W. Koh,J. A. Spechler, K. M. Lee, C. B. Arnold, and B. P. Rand, Enhanced Outcoupling in Organic Light-emitting Diodes Via a High-index Contrast Scattering Layer, Acs Photonics, 2(9), 1366(2015). https://doi.org/10.1021/acsphotonics.5b00346
  14. S. Luo, P. Yi, Y. Xiong, J. Shen, and S. Guo, Light-scattering Capacity of Ethylene-vinyl Acetate Copolymers in Polypropylene: Toward High Haze and Transmittance, J. of Applied Polymer Science, 133(34), 42844 (2016).
  15. W. Suthabanditpong, M. Tani, C. Takai, M. Fuji, R. Buntem, and T. Shirai, Facile Fabrication of Light Diffuser Films Based on Hollow Silica Nanoparticles as Fillers, Advanced Powder Technology, 27(2), 454(2016). https://doi.org/10.1016/j.apt.2016.01.028
  16. W. Stark and M. Jaunich, Investigation of Ethylene/vinyl Acetate Copolymer(EVA) by Thermal Analysis DSC and DMA, Polymer Testing, 30(2), 236(2011). https://doi.org/10.1016/j.polymertesting.2010.12.003
  17. S. Takahashi, H. Okada, S. Nobukawa, and M. Yamaguchi, Optical Properties of Polymer Blends Composed of Poly(Methyl Methacrylate) and Ethylene-vinyl Acetate Copolymer, European Polymer J., 48(5), 974(2012). https://doi.org/10.1016/j.eurpolymj.2012.02.009
  18. J. G. Lim, K. Kwak, and J. K. Song, Computation of Refractive Index and Optical Retardation in Stretched Polymer Films, Optics Express, 25(14), 16409(2017). https://doi.org/10.1364/OE.25.016409