Browse > Article
http://dx.doi.org/10.46670/JSST.2022.31.5.312

Stretchable Sensor Array Based on Lead-Free Piezoelectric Composites Made of BaTiO3 Nanoparticles and Polymeric Matrix  

Bae, Jun Ho (School of Materials Science and Engineering, Kyungpook National University)
Ham, Seong Su (School of Materials Science and Engineering, Kyungpook National University)
Park, Sung Cheol (School of Materials Science and Engineering, Kyungpook National University)
Park, and Kwi-Il (School of Materials Science and Engineering, Kyungpook National University)
Publication Information
Journal of Sensor Science and Technology / v.31, no.5, 2022 , pp. 312-317 More about this Journal
Abstract
Piezoelectric energy harvesting has attracted increasing attention over the last decade as a means for generating sustainable and long-lasting energy from wasted mechanical energy. To develop self-powered wearable devices, piezoelectric materials should be flexible, stretchable, and bio-eco-friendly. This study proposed the fabrication of stretchable piezoelectric composites via dispersing perovskite-structured BaTiO3 nanoparticles inside an Ecoflex polymeric matrix. In particular, the stretchable piezoelectric sensor array was fabricated via a simple and cost-effective spin-coating process by exploiting the piezoelectric composite comprising of BaTiO3 nanoparticles, Ecoflex matrix, and stretchable Ag coated textile electrodes. The fabricated sensor generated an output voltage of ~4.3 V under repeated compressing deformations. Moreover, the piezoelectric sensor array exhibited robust mechanical stability during mechanical pushing of ~5,000 cycles. Finite element method with multiphysics COMSOL simulation program was employed to support the experimental output performance of the fabricated device. Finally, the stretchable piezoelectric sensor array can be used as a self-powered touch sensor that can effectively detect and distinguish mechanical stimuli, such as pressing by a human finger. The fabricated sensor demonstrated potential to be used in a stretchable, lead-free, and scalable piezoelectric sensor array.
Keywords
Energy harvesting; Piezoelectric; $BaTiO_3$; Stretchable; Sensor array;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 D. Y. Hyeon and K.-I. Park, "A comparison study of output performance of organic-inorganic piezoelectric nanocomposite made of piezoelectric/non-piezoelectric polymers and BaTiO3 nanoparticles", J. Korean Powder Metall. Inst., Vol. 26, No. 2, pp. 119-125, 2019.   DOI
2 B.-U. Hwang, A. Zabeeb, T. Q. Trung, L. Wen, J. D. Lee, Y.-I. Choi, H.-B. Lee, J. H. Kim, J. G. Han, and N.-E. Lee, "A transparent stretchable sensor for distinguishable detection of touch and pressure by capacitive and piezoresistive signal transduction", NPG Asia Mater., Vol. 11, No. 1, pp. 1-12, 2019.   DOI
3 G.-T. Hwang, V. Annapureddy, J. H. Han, D. J. Joe, C. Baek, D. Y. Park, D. H. kim, J. H. Park, C. K. Jeong, K.-I. Park, J.-J. Choi, D. K. Kim, J. Ryu, and K. J. Lee, "Self-powered wireless sensor node enabled by an aerosol-deposited PZT flexible energy harvester", Adv Energy Mater., Vol. 6, No, 13, p.1600237, 2016.   DOI
4 S. S. Ham, G.-J. Lee, D. Y. Hyeon, Y.-G. Kim, Y.-W. Lim, M.-K. Lee, J.-J. Park, G.-T. Hwang, S. Yi, C. K. Jeong, and K.-I. Park, "Kinetic motion sensors based on flexible and lead-free hybrid piezoelectric composite energy harvesters with nanowires-embedded electrodes for detecting articular movements", Composites Part B, Vol. 212, p.108705, 2021.   DOI
5 S. Y. Lee and Y. Choi, "Piezoelectric energy harvesting principles and materials", Polym. Sci. Technol., Vol. 31, No. 6, pp. 484-489, 2020.
6 J. H. Han, K.-I. Park, and C. K. Jeong, "Dual-structured flexible piezoelectric film energy harvesters for effectively integrated performance", Sensors, Vol. 19, No. 6, p. 1444, 2019.   DOI
7 T. Kim and I. Park, "Skin-interfaced Wearable Biosensors: A Mini-Review", J. Sens. Sci. Technol., Vol. 31, No. 2, pp. 71-78, 2022.   DOI
8 Y. J. Kwon, D. Y. Hyeon, and K.-I. Park, "Flexible energy harvester made of organic-inorganic hybrid piezoelectric nanocomposite", Korean J. Mater. Res., Vol. 29, No. 6, pp. 371-377, 2019.   DOI
9 D. Y. Hyeon and K.-I. Park, "Piezoelectric flexible energy harvester based on BaTiO3 thin film enabled by exfoliating the Mica substrate", Energy Technol., Vol. 7, No. 10, p. 1900638, 2019.   DOI
10 S. C. Park, J. H. Lee, Y.-G. Kim, and K.-I. Park, "Flexible energy harvesting device based on hybrid piezoelectric nanocomposite made of lead-free BCTZ ceramic and piezopolymer", J. Korean Inst. Electr. Electron. Mater. Eng., Vol. 35, No. 1, pp. 72-79, 2022.
11 W. J. Lee, S.-Y. Park, H. J. Nam, and S.-H. Choa, "Mechanical and optical characteristics of transparent stretchable hybrid substrate using PDMS and ecoflex material", J. Microelectron. Packag. Soc., Vol. 25, No. 4, pp. 129-135, 2018.
12 K.-I. Park, J. H. Son, G.-T. Hwang, C. K. Jeong, J. Ryu, M. Koo, I. Choi, S. H. Lee, M. Byun, Z. L. Wang, and K. J. Lee, "Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates", Adv. Mater., Vol. 26, No. 16, pp. 2514-2520, 2014.   DOI
13 I. Pasuk, F. Neatu, S. Neatu, M. Florea, C. M. Istrate, I. Pintilie, and L. Pintilie, "Structural details of BaTiO3 Nanopowders deduced from the anisotropic XRD peak broadening", Nanomaterials, Vol. 11, No. 5, p. 1121, 2021.   DOI
14 C. Erdmier, J. Hatcher, and M. Lee, "Wearable device implications in the healthcare industry", J. Med. Eng. Technol., Vol. 40, No. 4, pp. 141-148, 2016.   DOI
15 C. K. Jeong, J. Lee, S. Han, J. Ryu, G.-T. Hwang, D. Y. Park, J. H. Park, S. S. Lee, M. Byun, S. H. Ko, and K. J. Lee, "A hyper-stretchable elastic-composite energy harvester", Adv Mater., Vol. 27, No. 18, pp. 2866-2875, 2015.   DOI
16 H.-T. Deng, X.-R. Zhang, Z.-Y. Wang, D.-L. Wen, Y.-Y. Ba, B. Kim, M.-D. Han, H.-X. Zhang, and X.-S. Zhang, "Super-stretchable multi-sensing triboelectric nanogenerator based on liquid conductive composite", Nano Energy, Vol. 83, p. 103948, 2021.
17 K.-I. Park, S. Xu, Y. Liu, G.-T. Hwang, S.-J. Kang, Z. L. Wang, and K. J. Lee, "Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates", Nano Lett., Vol. 10, No. 12, pp. 4939-4943, 2010.   DOI
18 K.-I. Park, M. Lee, Y. Liu, S. Moon, G.-T. Hwang, G. Zhu, J. E. Kim, S. O. Kim, D. K. Kim, Z. L. Wang, and K. J. Lee, "Flexible nanocomposite generator made of batio3 nanoparticles and graphitic carbons", Adv. Mater., Vol. 24, No. 22, pp. 2999-3004, 2012.   DOI
19 Y. Jung and H. Cho, "Flexible pressure sensors based on three-dimensional structure for high sensitivity", J. Sens. Sci. Technol., Vol. 31, No. 3, pp.145-150, 2022.   DOI
20 C. K. Jeong, D. Y. Hyeon, G.-T. Hwang, G.-J. Lee, M.-K. Lee, J.-J. Park, and K.-I. Park, "Nanowire-percolated piezoelectric copolymer-based highly transparent and flexible self-powerd sensors", J. Mater. Chem. A, Vol. 7, No. 44, pp. 25481-25489, 2019.   DOI
21 L. M. Swallow, J. K. Luo, E. Siores, I. Patel, and D. Dodds, "A piezoelectric fibre composite based energy harvesting device for potential wearable applications", Smart Mater. Struct., Vol. 17, No. 2, p. 025017, 2008.   DOI