• Title/Summary/Keyword: test bench

Search Result 394, Processing Time 0.028 seconds

Setting Up of Parallel Cluster System and Reproduction of the Yellow Sea Tidal Hydrodynamics Using a FEM Model (병렬 클러스터 시스템 구축 및 유한요소모형을 이용한 황해 조석재현)

  • Suh, Seung-Won;Lee, Hwa-Young
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.1
    • /
    • pp.1-15
    • /
    • 2007
  • In this study 8 nodes parallel linux cluster system is constructed and tested for the evaluation of computational efficiency and reliability of the Yellow Sea tidal hydrodynamics prior to compute storm surge inundation along the west coast of the Korean Peninsular. Computational efficiency increases up to 7 times based on NPB bench-marking test. Simulated results by pADCIRC on reproduction of the Yellow Sea tidal hydrodynamics resemble well with previous studies. According to model parameter tests, bottom friction coefficient, which should be appropriately represented shallow depth along the west coast, is essential factor in simulation.

CHEMICAL EFFECTS ON PWR SUMP STRAINER BLOCKAGE AFTER A LOSS-OF-COOLANT ACCIDENT: REVIEW ON U.S. RESEARCH EFFORTS

  • Bahn, Chi Bum
    • Nuclear Engineering and Technology
    • /
    • v.45 no.3
    • /
    • pp.295-310
    • /
    • 2013
  • Industry- or regulatory-sponsored research activities on the resolution of Generic Safety Issue (GSI)-191 were reviewed, especially on the chemical effects. Potential chemical effects on the head loss across the debris-loaded sump strainer under a post-accident condition were experimentally evidenced by small-scale bench tests, integrated chemical effects test (ICET), and vertical loop head loss tests. Three main chemical precipitates were identified by WCAP-16530-NP: calcium phosphate, aluminum oxyhydroxide, and sodium aluminum silicate. The former two precipitates were also identified as major chemical precipitates by the ICETs. The assumption that all released calcium would form precipitates is reasonable. CalSil insulation needs to be minimized especially in a plant using trisodium phosphate buffer. The assumption that all released aluminum would form precipitates appears highly conservative because ICETs and other studies suggest substantial solubility of aluminum at high temperature and inhibition of aluminum corrosion by silicate or phosphate. The industry-proposed chemical surrogates are quite effective in increasing the head loss across the debris-loaded bed and more effective than the prototypical aluminum hydroxide precipitates generated by in-situ aluminum corrosion. There appears to be some unresolved potential issues related to GSI-191 chemical effects as identified in NUREG/CR-6988. The United States Nuclear Regulatory Commission, however, concluded that the implications of these issues are either not generically significant or are appropriately addressed, although several issues associated with downstream in-vessel effects remain.

Process Development of Pyrolysis Liquefaction for Waste Plastics (폐플라스틱의 열분해 유화기술 개발)

  • Nho, Nam-Sun;Shin, Dae-Hyun;Park, Sou-Won;Lee, Kyong-Hwan;Kim, Kwang-Ho;Jeon, Sang-Goo;Cho, Bong-Gyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.523-526
    • /
    • 2006
  • The target of this work was the process development of demonstration plant to produce the high quailty alternative fuel oil by the pyrolysis of mixed plastic waste. In the first step of research, the bench-scale units of 70t/y and the pi lot plant of 360 t/v had been developed. Main research contents in this step were the process performance test of pilot plant ot 360ton/year and the development of demonstration plant of 3 000 t/y which was constructed at Korea R & D Company in Kimjae City. The process performance of pilot plant of 360 t/v showed components in PONA group appeared at between that of commercial gasoline and kerosene. On the other hand, HO product was mainly paraffin and olefin components and also appeared at upper temperature distribution range than commercial diesel. Gas product showed a high fraction of $C_3\;and\;C_4$ product like LPG composition, but also a high fraction of $CO_2$ and CO by probably a little leak of process.

  • PDF

Development of Drifter's Hydraulic System Model and Its Validation (드리프터의 유압시스템 해석모델 개발 및 신뢰성 검토)

  • Noh, D.K.;Jang, J.S.;Seo, J.H.;Kim, H.S.;Park, S.H.
    • Journal of Drive and Control
    • /
    • v.11 no.3
    • /
    • pp.14-21
    • /
    • 2014
  • The goal of this study drifter is to understand the operating mechanism of a drifter and to suggest a reliable analysis model which can be used for evaluating the drifter's performance from the viewpoint of impact frequency and energy. For this, the working principle of drifter and functions of its main components were analyzed, and a simulation model was developed based on the analysis. The model was validated using experimental tests on a test-bench. A comparative study of simulation and experimental results indicated that the suggested model accurately represents the real drifter system in terms of impact frequency and impact energy per blow.

FPGA-Based Low-Power and Low-Cost Portable Beamformer Design (FPGA 기반 저전력 및 저비용 휴대용 빔포머 설계)

  • Jeong, GabJoong;Park, CheolYoung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.1
    • /
    • pp.31-38
    • /
    • 2019
  • In this paper, we develop a beamforming front end platform with pipeline circuit configuration method that can apply various clinical diagnostic applications of ultrasound image technology. Hardware design targets compression applications as well as scalable applications where power, integration levels and replication possibilities are important. Firmware design was implemented to achieve optimal FPGA parallel processing level by constructing new IP and system-oriented design environment to accelerate design productivity with maximum productivity improvement using Vivado HLS tool, which is a next generation high level synthesis tool. Former supports the high-speed management function of scan data that can create an image area arbitrarily and can be appropriately corrected and supplemented when reconfiguring or changing system specifications in the future.

Performance Analysis of Processors for Next Generation Satellites (차세대 위성 프로세서 선정을 위한 성능 분석)

  • Yoo, Bum-Soo;Choi, Jong-Wook;Jeong, Jae-Yeop;Kim, Sun-Wook
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.1
    • /
    • pp.51-61
    • /
    • 2019
  • There are strict evaluation processes before using new processors to satellites. Engineers evaluate processors from various viewpoints including specification, development environment, and cost. From a viewpoint of computation power, manufacturers provide benchmark results with processors, and engineers decide which processors are adequate to their satellites by comparing the benchmark results with requirements of their satellites. However, the benchmark results depends on a test environment of manufacturers, and it is quite difficult to achieve similar performance in a target environment. Therefore, it is necessary to evaluate the processors in the target environment. This paper compares performance of a processor, AT697F/LEON2, in software testbed (STB) with three development boards of XC2V/LEON3, GR712RC/LEON3, and GR740/LEON4. Seven benchmark functions of Dhrystone, Stanford, Coremark, Whetstone, Flops, NBench, and MiBench are selected. Results are analyzed with hardware and software properties: hardware properties of core architecture, number of cores, cache, and memory; and software properties of build options and compilers. Based on the analysis, this paper describes a guideline for choosing processors for next generation satellites.

A System Level Design of Heterogeneous Multiplication Server Farms (이종 곱셈 연산기 서버 팜의 시스템 레벨 설계)

  • Moon, Sangook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.768-770
    • /
    • 2014
  • Due to increasing demand of new technology, the complexity of hardware and software consisting embedded systems is rapidly growing. Consequently, it is getting hard to design complex devices only with traditional methodology. In this contribution, I introduce a new approach of designing complex hardware with SystemVerilog. I adopted the idea of object oriented implementation of the SystemVerilog to the design of multiplication server farms. I successfully implemented the whole system including the test bench in one integrated environment, otherwise in the traditional way it would have cost Verilog simulation and C/SystemC verification which means much more time and effort.

  • PDF

Effects of Reactor Type on the Economy of the Ethanol Dehydration Process: Multitubular vs. Adiabatic Reactors

  • Yoo, Kee-Youn
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.467-479
    • /
    • 2021
  • Abstract: A kinetic model was developed for the dehydration of ethanol to ethylene based on two parallel reaction pathways. Kinetic parameters were estimated by fitting experimental data of powder catalysts in a lab-scale test, and the effectiveness factor was determined using data from pellet-type catalysts in bench-scale experiments. The developed model was used to design a multitubular fixed-bed reactor (MTR) and an adiabatic reactor (AR) at a 10 ton per day scale. The two different reactor types resulted in different process configurations: the MTR consumed the ethanol completely and did not produce the reaction intermediate, diethyl ether (DEE), resulting in simple separation trains at the expense of high equipment cost for the reactor, whereas the AR required azeotropic distillation and cryogenic distillation to recycle the unreacted ethanol and to separate the undesired DEE, respectively. Quantitative analysis based on the equipment and annual energy costs showed that, despite high equipment cost of the reactor, the MTR process had the advantages of high productivity and simple separation trains, whereas the use of additional separation trains in the AR process increased both the total equipment cost and the annual energy cost per unit production rate.

Single Phase Inverter High Frequency Circuit Modeling and Verification for Differential Mode Noise Analysis (차동 노이즈 분석을 위한 단상 인버터 고주파 회로 모델링 및 검증)

  • Shin, Ju-Hyun;Seng, Chhaya;Kim, Woo-Jung;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.3
    • /
    • pp.176-182
    • /
    • 2021
  • This research proposes a high-frequency circuit that can accurately predict the differential mode noise of single-phase inverters at the circuit design stage. Proposed single-phase inverter high frequency circuit in the work is a form in which harmonic impedance components are added to the basic single-phase inverter circuit configuration. For accurate noise prediction, parasitic components present in each part of the differential noise path were extracted. Impedance was extracted using a network analyzer and Q3D in the measurement range of 150 kHz to 30 MHz. A high-frequency circuit model was completed by applying the measured values. Simulations and experiments were conducted to confirm the validity of the high-frequency circuit. As a result, we were able to predict the resonance point of the differential mode voltage extracted as an experimental value with a high-frequency circuit model within an approximately 10% error. Through this outcome, we could verify that differential mode noise can be accurately predicted using the proposed model of the high-frequency circuit without a separate test bench for noise measurement.

Transfer Learning Based Real-Time Crack Detection Using Unmanned Aerial System

  • Yuvaraj, N.;Kim, Bubryur;Preethaa, K. R. Sri
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.4
    • /
    • pp.351-360
    • /
    • 2020
  • Monitoring civil structures periodically is necessary for ensuring the fitness of the structures. Cracks on inner and outer surfaces of the building plays a vital role in indicating the health of the building. Conventionally, human visual inspection techniques were carried up to human reachable altitudes. Monitoring of high rise infrastructures cannot be done using this primitive method. Also, there is a necessity for more accurate prediction of cracks on building surfaces for ensuring the health and safety of the building. The proposed research focused on developing an efficient crack classification model using Transfer Learning enabled EfficientNet (TL-EN) architecture. Though many other pre-trained models were available for crack classification, they rely on more number of training parameters for better accuracy. The TL-EN model attained an accuracy of 0.99 with less number of parameters on large dataset. A bench marked METU dataset with 40000 images were used to test and validate the proposed model. The surfaces of high rise buildings were investigated using vision enabled Unmanned Arial Vehicles (UAV). These UAV is fabricated with TL-EN model schema for capturing and analyzing the real time streaming video of building surfaces.