• Title/Summary/Keyword: terahertz

Search Result 256, Processing Time 0.02 seconds

A Multi-Section Complex-Coupled DFB Laser with a Very Wide Range of Self-Pulsation Frequency and High Modulation Index (매우 넓은 영역의 Self-Pulsation 주파수와 높은 변조 지수를 가자는 다중 영역 복소 결합 DFB 레이저)

  • Kim, Boo-Gyoun;Kim, Tae-Young;Kim, Sang-Taek;Kim, Sun-Ho;Park, Kyung-Hyun
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.2
    • /
    • pp.191-197
    • /
    • 2006
  • We analyze the self-pulsation(SP) characteristics due to mode beating of two modes emitted in a multi-section complex-coupled (CC) DFB laser composed of two DFB sections and a phase control section between them. SP frequency due to mode beating of the two modes is determined by the difference of grating periods in the two CC DFB regions. As the difference of grating periods in the two CC DFB regions increases, the SP frequency increases from very low frequency to the THz region. In the case of a mode which is not located in the stop band of the other DFB region, the mode propagates into the other DFB region without a high reflection, so that output powers emitted in a multi-section CC DFB laser have high modulation indexes due to the large interaction between the two modes.

Wireless Communication at 310 GHz using GaAs High-Electron-Mobility Transistors for Detection

  • Blin, Stephane;Tohme, Lucie;Coquillat, Dominique;Horiguchi, Shogo;Minamikata, Yusuke;Hisatake, Shintaro;Nouvel, Philippe;Cohen, Thomas;Penarier, Annick;Cano, Fabrice;Varani, Luca;Knap, Wojciech;Nagatsuma, Tadao
    • Journal of Communications and Networks
    • /
    • v.15 no.6
    • /
    • pp.559-568
    • /
    • 2013
  • We report on the first error-free terahertz (THz) wireless communication at 0.310 THz for data rates up to 8.2 Gbps using a 18-GHz-bandwidth GaAs/AlGaAs field-effect transistor as a detector. This result demonstrates that low-cost commercially-available plasma-wave transistors whose cut-off frequency is far below THz frequencies can be employed in THz communication. Wireless communication over 50 cm is presented at 1.4 Gbps using a uni-travelling-carrier photodiode as a source. Transistor integration is detailed, as it is essential to avoid any deleterious signals that would prevent successful communication. We observed an improvement of the bit error rate with increasing input THz power, followed by a degradation at high input power. Such a degradation appears at lower powers if the photodiode bias is smaller. Higher-data-rate communication is demonstrated using a frequency-multiplied source thanks to higher output power. Bit-error-rate measurements at data rates up to 10 Gbps are performed for different input THz powers. As expected, bit error rates degrade as data rate increases. However, degraded communication is observed at some specific data rates. This effect is probably due to deleterious cavity effects and/or impedance mismatches. Using such a system, realtime uncompressed high-definition video signal is successfully and robustly transmitted.

Channel Model and Wireless Link Performance Analysis for Short-Range Wireless Communication Applications in the Terahertz Frequency (테라헤르츠 대역 주파수에서 근거리 무선 통신 응용을 위한 채널 모델 및 무선 링크 성능 분석)

  • Chung, Tae-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.9
    • /
    • pp.868-882
    • /
    • 2009
  • In this paper, channel model and wireless link performance analysis for the short-range wireless communication system applications in the terahertz frequency which is currently interested in many countries will be described. In order to realize high data rates above 10 Gbps, the more wide bandwidths will be required than the currently available bandwidths of millimeter-wave frequencies, therefore, the carrier frequencies will be pushed to THz range to obtain larger bandwidths. From the THz atmospheric propagation characteristics based on ITU-R P.676-7, the available bandwidths were calculated to be 68, 48 and 45 GHz at the center frequencies of 220, 300 and 350 GHz, respectively. With these larger bandwidths, it was shown from the simulation that higher data rate above 10 Gbps can be achieved using lower order modulation schemes which have spectral efficiency of below 1. The indoor propagation delay spread characteristics were analyzed using a simplified PDP model with respect to building materials. The RMS delay spread was calculated to be 9.23 ns in a room size of $6\;m(L){\times}5\;m(W){\times}2.5\;m(H)$ for the concrete plaster with TE polarization, which is a similar result of below 10 ns from the Ray-Tracing simulation in the reference paper. The indoor wireless link performance analysis results showed that receiver sensitivity was $-56{\sim}-46\;dBm$ over bandwidth of $5{\sim}50\;GHz$ and antenna gain was calculated to be $26.6{\sim}31.6\;dBi$ at link distance of 10m under the BPSK modulation scheme. The maximum achievable data rates were estimated to be 30, 16 and 12 Gbps at the carrier frequencies of 220, 300 and 350 GHz, respectively, under the A WGN and LOS conditions, where it was assumed that the output power of the transmitter is -15 dBm and link distance of 1 m with BER of $10^{-12}$. If the output power of transmitter is increased, the more higher data rate can be achieved than the above results.

A Study on THz Generation and Detection Characteristics of InGaAs Semiconductor Epilayers (InGaAs 반도체 박막의 테라헤르쯔(THz) 발생 및 검출 특성 연구)

  • Park, D.W.;Kim, J.S.;Noh, S.K.;Ji, Young-Bin;Jeon, T.I.
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.5
    • /
    • pp.264-272
    • /
    • 2012
  • In this paper, we report THz generation and detection characteristics investigated by InGaAs semiconductor epilayers, as results of a basic study obtained from the InGaAs-based THz transmitter/receiver (Tx/Rx). High-temperature and low-temperature (LT) grown InGaAs epilayers were prepared by the molecular beam epitaxy technique for the characterization of THz generation and detection, respectively, and the surface emission based on the photo-Dember effect was tried for THz generation. THz wave was generated by irradiation of a Ti:Sapphire fs pulse laser (60 ps/83 MHz), and a LT-GaAs Rx was used for the THz detection. The frequency band shown in the spectral amplitudes Fourier-transformed from the measured current signals was ranging in 0.5~2 THz, and the signal currents were exponentially increased with the Tx beam power. The THz detection characteristics of LT-InGaAs were investigated by using an Rx with dipole (5/20 ${\mu}m$) antenna, and the cutoff frequency was ~2 THz.

Phase Noise Characterization with Optical Carrier Suppression Level on Continuous Wave in the Ranges of Millimeter Waves Generated by Photomixing of Optical Double Sideband-Suppressed Carrier(DSB-SC) (광 반송파가 억압된 양측 대역 방식의 광 혼합을 통하여 발생된 밀리미터파 대역 연속파에서 광 반송파 억압 레벨에 따른 위상 잡음 특성 분석)

  • Kim, Sung-Il;Kang, Kwang-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.9
    • /
    • pp.974-982
    • /
    • 2009
  • Photomixing techniques beating two optical signals with different wavelengths and strong correlations are also very useful techniques to make a continuous wave(CW) signals in the range of millimeter(mm) and terahertz(THz) frequencies. An optical double sideband-suppressed carrier(DSB-SC) technique is one of the popular techniques to generate two optical signals with different wavelengths and strong correlations. DSB-SC signals with strong correlations are generated by a CW modulation of an optical carrier with a local oscillator and an optical modulator. In the previous parers related the DSB-SC for producing the CW signals within the range of mm and THz frequencies, there have been no reports why the optical carrier should suppress. In order to clear that, we have analyzed and measured the characteristics of the mm-wave CW signals made by the DSB-SC photomixing in this paper. From our analysis and measurement results, compared with the case of the DSB with the maximized optical carrier, the power and phase noise have improved about 23.9 dB and 21 dBc/Hz(@ 1 MHz offset frequency) in the case of the DSB with the minimized optical carrier (that is to say, the DSB-SC). Consequently, it is evident reason that the optical carrier should sufficiently suppress to obtain the mm-wave CW signals with the high power and low noise. This paper has given very helpful data to make mm- and THz-wave CW signals using photomixing techniques with the DSB-SC because the reason why the optical carrier should be suppressed is reported in this paper based on the numerical and experimental results.

Trends in Rapid Detection Methods for Food-borne pathogenic Microorganisms by Using New Technologies (신기술 이용 식중독균 신속검출법 개발 동향 분석)

  • Kim, Hyun-Joo;Kim, Yong-Soo;Chung, Myung-Sub;Oh, Deog-Hwan;Chun, Hyang-Sook;Ha, Sang-Do
    • Journal of Food Hygiene and Safety
    • /
    • v.25 no.4
    • /
    • pp.376-387
    • /
    • 2010
  • Recently, speedy, convenient and easy detection technologies have been developed rapidly and on the contrary, studies on development of traditional detectors applying biochemical characteristics has gradually been decreased. This review examined trend in current studies on detection of food-borne pathogenic microorganisms in the fields of selective media, immuno-assay, Polymerase Chain Reaction (PCR), microarray, terahertz spectroscopy & imagination and so on. Most traditional methods to detect the organisms from food matrix rely on selective media and such a method have disadvantages like long time requirement and distinguishing one species only from each selective medium although they are highly economical. Various new convenient methods such as Enzyme Linked Immuno-sorbent Assay (ELISA), paper-strip kit, fluoroimmunoassay etc. have been developed. The most ideal method for detecting food-borne pathogenic microorganisms in foods should be accurate, convenient, rapid and economical. Additionally, it is needed that capabilities of quantitative analysis and automation to be applied to industries.