DOI QR코드

DOI QR Code

InGaAs 반도체 박막의 테라헤르쯔(THz) 발생 및 검출 특성 연구

A Study on THz Generation and Detection Characteristics of InGaAs Semiconductor Epilayers

  • 박동우 (전북대학교 신소재공학부) ;
  • 김진수 (전북대학교 신소재공학부) ;
  • 노삼규 (한국표준과학연구원 양자검출소자 글로벌연구실) ;
  • 지영빈 (한국해양대학교 전기전자공학부) ;
  • 전태인 (한국해양대학교 전기전자공학부)
  • Park, D.W. (Faculty of New Materials Engineering, Chonbuk National University) ;
  • Kim, J.S. (Faculty of New Materials Engineering, Chonbuk National University) ;
  • Noh, S.K. (Global Research Laboratory on Quantum Detector Technology, Korea Research Institute of Standards and Science) ;
  • Ji, Young-Bin (Faculty of Electrical and Electronic Enigneering, Korea Marine University) ;
  • Jeon, T.I. (Faculty of Electrical and Electronic Enigneering, Korea Marine University)
  • 투고 : 2012.07.23
  • 심사 : 2012.09.10
  • 발행 : 2012.09.30

초록

본 논문에서는 InGaAs 반도체에 기반한 테라헤르쯔(THz) 송/수신기(Tx/Rx) 제작을 위한 기초 연구로서, InGaAs 박막의 THz 발생 및 검출 특성에 관한 결과를 보고한다. THz 발생과 검출 특성 조사에는 각각 MBE 장비로 고온(HT) 및 저온(LT)에서 성장한 InGaAs 박막이 사용되었으며, THz 발생에는 photo-Dember 표면방출 방법이 시도되었다. HT-InGaAs 기판 위에 제작한 전송선(Ti/Au)의 가장자리에 Ti:Sapphire fs 펄스 레이저(60 ps/83 MHz)를 조사하여 THz파를 발생시켰으며, 이때 THz 검출에는 LT-GaAs가 사용되었다. 시간지연에 따른 전류신호를 Fourier 변환하여 얻은 THz 스펙트럼의 주파수 범위는 약 0.5~2 THz이었으며, 여기 레이저 출력에 대한 신호의 세기는 지수함수적 변화를 보였다. THz 검출 특성에 사용한 LT-InGaAs Rx에는 쌍극자(5/20 ${\mu}m$) 구조의 안테나가 탑재되어 있으며, 차단 주파수는 약 2 THz이었다.

In this paper, we report THz generation and detection characteristics investigated by InGaAs semiconductor epilayers, as results of a basic study obtained from the InGaAs-based THz transmitter/receiver (Tx/Rx). High-temperature and low-temperature (LT) grown InGaAs epilayers were prepared by the molecular beam epitaxy technique for the characterization of THz generation and detection, respectively, and the surface emission based on the photo-Dember effect was tried for THz generation. THz wave was generated by irradiation of a Ti:Sapphire fs pulse laser (60 ps/83 MHz), and a LT-GaAs Rx was used for the THz detection. The frequency band shown in the spectral amplitudes Fourier-transformed from the measured current signals was ranging in 0.5~2 THz, and the signal currents were exponentially increased with the Tx beam power. The THz detection characteristics of LT-InGaAs were investigated by using an Rx with dipole (5/20 ${\mu}m$) antenna, and the cutoff frequency was ~2 THz.

키워드

참고문헌

  1. K. Sakai (Ed.), Terahertz Optoelectronics (Springer, Germany, 2005).
  2. M. Tonouchi, Nature Photonics 1, 97 (2007). https://doi.org/10.1038/nphoton.2007.3
  3. S. Wang and X. -C. Zhang, J. Phys. D37, R1 (2004).
  4. N. J. Kim, S.-P. Han, H. S. Ko, Y. A. Leem, H.-C. Ryu, C. W. Lee, D. H. Lee, M. Y. Jeon, S. K. Noh, and K. H. Park, Opt. Exp. 19, 15397 (2011). https://doi.org/10.1364/OE.19.015397
  5. S.-P. Han, H. S. Ko, N. J. Kim, H. -C. Ryu, C. W. Lee, Y. A. Leem, D. H. Lee, M. Y. Jeon, S. K. Noh, H. S. Chun, and K. H. Park, Opt. Lett. 36, 3094 (2011). https://doi.org/10.1364/OL.36.003094
  6. B. Sartorius, M. Schlak, D. Stanze, H. Roehle, H. Kuenzel, D. Schmidt, H.-G. Bach, R. Kunkel, and M. Schell, Opt. Exp. 17, 15001 (2009). https://doi.org/10.1364/OE.17.015001
  7. A. Tredicucci, R. Koehler, L. Mahler, H. E. Beere, E. H. Linfield, and D. A. Ritchie, Semicond. Sci. Technol. 20, S222 (2005).
  8. K. L. Vodopyanov, Laser & Photon. Rev. 2, 11 (2009).
  9. G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Richie, and J. Faist, Laser & Photon Rev. 3, 45 (2009). https://doi.org/10.1002/lpor.200810030
  10. H. Rochle, R. J. B. Dietz, H. J. Hensel, J. Boettcher, H. Kuezel, D. Stanze, M. Schell, and B. Sartorius, Opt. Exp. 18, 2296 (2010). https://doi.org/10.1364/OE.18.002296
  11. S. J. Oh, C. Kang, I. Maeng, J. -H. Son, N. K. Cho, J. D. Song, W. J. Cho, and J. I. Lee, Appl. Phys. Lett. 90, 131906 (2007). https://doi.org/10.1063/1.2716859
  12. J. Sigmund, C. Sydlo, H. L. Hartnagel, N. Benker, H. Fuess, F. Rutz, T. Kleine-Ostmann, and M. Koch, Appl. Phys. Lett. 87, 252103 (2005). https://doi.org/10.1063/1.2149977
  13. V. Ryzhii, M. Ryzhii, V. Miltin, and T. Otsuji, J. Appl. Phys. 107, 054512 (2010). https://doi.org/10.1063/1.3327441
  14. G. Huang, W. Guo, P. Bhattacharya, G. Ariyawansa, and A. G. U. Perera, Appl. Phys. Lett. 94, 101115 (2009). https://doi.org/10.1063/1.3100407
  15. P. V. V. Jayaweera, S. G. Matsik, A. G. U. Perera, Y. Paltiel, A. Sher, A. Raizman, H. Luo, and H. C. Liu, Appl. Phys. Lett. 90, 111109 (2007). https://doi.org/10.1063/1.2713760
  16. S. J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, Nature Commun. 2, 286 (2011).
  17. S. J. Lee, S. K. Noh, S. H. Bae, and H. Jung, J. Korean Vacuum Soc. 20, 22 (2011). https://doi.org/10.5757/JKVS.2011.20.1.022
  18. H. W. Shin, J. W. Choe, J. O. Kim, S. J. Lee, C. S. Kim, and S. K. Noh, J. Korean Vacuum Soc. 20, 35 (2011). https://doi.org/10.5757/JKVS.2011.20.1.035
  19. C. S. Kim, J. H. Kim, K. J. Yee, D. H. Youn, and K. Y. Kang, J. Korean Phys. Soc. 55, 630 (2009). https://doi.org/10.3938/jkps.55.630
  20. S. Rihani, R Faulks, H. E. Beere, I. Farrer, M. Evans, D. A. Ritchie, and M. Pepper, Appl. Phys. Lett. 96, 091101 (2010). https://doi.org/10.1063/1.3332587
  21. L. Joulaud, J. Mangeney, N. Chimot, P. Crozat, G. Fishman, and J. C. Bourgoin, J. Appl. Phys. 97, 063515 (2005). https://doi.org/10.1063/1.1861966
  22. J. O. Kim, S. J. Lee, D. S. Yee, S. K. Noh, J. H. Shin, K. H. Park, C. Kang, C. -S. Kee, D. W. Park, C. S. Kim, and J. S. Kim, J. Korean Phys. Soc. 58, 1334 (2011). https://doi.org/10.3938/jkps.58.1334
  23. Y. Ko, S. Sengupta, S. Tomasulo, P. Dutta, and I. Wilke, Phys. Rev. B 78, 035201 (2008).
  24. G. Klatt, F. Hilser, W. Qiao, M. Beck, R. Gebs, A. Bartels, K. Huska, U. Lemmer, G. Bastian, M. B. Johnson, M. Fischer, J. Faist, and T. Dekorsy, Opt. Exp. 18, 4939 (2010). https://doi.org/10.1364/OE.18.004939
  25. J. L. Pan, J. E. Mcmanis, T. Osadchy, L. Grober, J. M. Woodall, and P. J. Kindmann, Nature Mater. 2, 375 (2003). https://doi.org/10.1038/nmat887
  26. R. Ascazubi, C. Shneider, I. Wilke, R. Pino, and P. S. Dutta, Phys. Rev. B 72, 045328 (2005). https://doi.org/10.1103/PhysRevB.72.045328
  27. C. Baker, I. S. Gregory, M. J. Evans, W. R. Tribe, E. H. Linfield, and M. Missous, Opt. Exp. 13, 9639 (2005). https://doi.org/10.1364/OPEX.13.009639
  28. I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. Giles, and M. Missous, IEEE J. Quantum Electron. 41, 717 (2005). https://doi.org/10.1109/JQE.2005.844471