DOI QR코드

DOI QR Code

Wireless Communication at 310 GHz using GaAs High-Electron-Mobility Transistors for Detection

  • Received : 2013.07.01
  • Published : 2013.12.31

Abstract

We report on the first error-free terahertz (THz) wireless communication at 0.310 THz for data rates up to 8.2 Gbps using a 18-GHz-bandwidth GaAs/AlGaAs field-effect transistor as a detector. This result demonstrates that low-cost commercially-available plasma-wave transistors whose cut-off frequency is far below THz frequencies can be employed in THz communication. Wireless communication over 50 cm is presented at 1.4 Gbps using a uni-travelling-carrier photodiode as a source. Transistor integration is detailed, as it is essential to avoid any deleterious signals that would prevent successful communication. We observed an improvement of the bit error rate with increasing input THz power, followed by a degradation at high input power. Such a degradation appears at lower powers if the photodiode bias is smaller. Higher-data-rate communication is demonstrated using a frequency-multiplied source thanks to higher output power. Bit-error-rate measurements at data rates up to 10 Gbps are performed for different input THz powers. As expected, bit error rates degrade as data rate increases. However, degraded communication is observed at some specific data rates. This effect is probably due to deleterious cavity effects and/or impedance mismatches. Using such a system, realtime uncompressed high-definition video signal is successfully and robustly transmitted.

Keywords

References

  1. H. Song and T. Nagatsuma, "Present and future of terahertz communications," IEEE Trans. Terahertz Sci. Technol., vol. 1, no. 1, pp. 256-263, 2011. https://doi.org/10.1109/TTHZ.2011.2159552
  2. J. Federici and L. Moeller, "Review of terahertz and subterahertz wireless communications," J. Appl. Physics, vol. 107, no. 11, p. 111101, 2010. https://doi.org/10.1063/1.3386413
  3. T. Kleine-Ostmann and T. Nagatsuma, "A review on terahertz communications research," J. Infrared Milimeter Terahertz Waves, vol. 32, no. 2, pp. 143-171, 2011. https://doi.org/10.1007/s10762-010-9758-1
  4. C. Jansen, S. Priebe, C. Moller, M. Jacob, H. Dierke, M. Koch, and T. Kurner, "Diffuse scattering from rough surfaces in THz communication channels," IEEE Trans. Terahertz Sci. Technol., vol. 1, no. 2, pp. 462-472, 2011. https://doi.org/10.1109/TTHZ.2011.2153610
  5. T. Kurner, "Towards future THz communications systems," Int. J. Terahertz Sci. Technol., vol. 1, no. 2, pp. 462-472, 2011. https://doi.org/10.1109/TTHZ.2011.2153610
  6. D. Dragoman and M. Dragoman, "Terahertz fields and applications," Progress in Quantum Electronics, vol. 28, no. 1, pp. 1-6, 2004. https://doi.org/10.1016/S0079-6727(03)00058-2
  7. C. Jastrow et al., "300 GHz transmission system," Electron. Lett., vol. 44, no. 3, pp. 213-214, 2008. https://doi.org/10.1049/el:20083359
  8. L. Moeller et al., "2.5 Gb/s error-free transmission at 625 GHz using a narrow-bandwidth 1 mWTHz source," in Proc. Tech. Dig. URSI General Assembly and Scientific Symposium, 2001.
  9. K. Ishigaki et al, "Direct intensity modulation and wireless data transmission characteristics of terahertz-oscillating resonant tunnelling diodes," Electron. Lett., vol. 48, no. 10, pp. 582-583, 2012. https://doi.org/10.1049/el.2012.0849
  10. M. Dyakonov and M. Shur, "Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid," IEEE Trans. Electron Devices, vol. 43, no. 3, pp. 380-387, 1996. https://doi.org/10.1109/16.485650
  11. W. Knap andM. I. Dyakonov, "Field-effect transistor for terahertz applications," Handbook of terahertz technology for imaging, sensing and communications, Woodhead Publishing Series in Electronic and Optical Materials, no. 34, 2013.
  12. W. Knap et al., "Field effect transistors for terahertz detection: Physics and first imaging applications," J. Infrared Millimeter Terahertz Waves, vol. 30, pp. 1319-1337, 2009.
  13. J. Antes, S. Konig, A. Leuther, H. Massler, J. Leuthold, O. Ambacher, and I. Kallfass, "220 GHz wireless data transmission experiments up to 30 Gbit/s," in Proc. IEEE MTT-S International Microwave Symposium Digest (MTT), pp. 1.3, 2012.
  14. G. Ducournau, A. Beck, F. Pavanello, P. Latzel, T. Akalin, E. Peytavit, M. Zaknoune, and J. Lampin, "22 Gbit/s wireless link at 400 GHz using photonic transmitter and heterodyne electronic detection," in Proc. 7th Terahertz Days, 2013.
  15. T. J. Chung and W.-H. Lee, "10-Gbit/s wireless communication system at 300 GHz," ETRI J., vol. 35, no. 3, 2013.
  16. L. Tohme, S. Blin, P. Nouvel, L. Varani, and A. Penarier, "Roomtemperature terahertz heterodyne mixing in GaAs commercial transistors," in Proc. IRMMW-THz (Mainz, Germany), 2013.
  17. H.-J. Song, K. Ajito, A. Wakatsuki, Y. Muramoto, N. Kukutsu, Y. Kado, and T. Nagatsuma, "Terahertz wireless communication link at 300 GHz," in Proc. Int. Topical Meeting Microw. Photon. (MWP), 2010, pp. 42.45.
  18. F. Schuster, D. Coquillat, H. Videlier, M. Sakowicz, F. Teppe, L. Dussopt, B. Giffard, T. Skotnicki, and W. Knap, "Broadband terahertz imaging with highly sensitive silicon CMOS detectors," Optics Express, vol. 19, no. 8, pp. 7827-7832, 2011. https://doi.org/10.1364/OE.19.007827
  19. S. Blin, F. Teppe, L. Tohme, S. Hisatake, K. Arakawa, P. Nouvel, D. Coquillat, A. Penarier, J. Torres, L. Varani, W. Knap, and T. Nagatsuma, "Plasma-wave detectors for terahertz wireless communication," IEEE Electron Device Lett., vol. 33, no. 10, pp. 1354-1356, 2012. https://doi.org/10.1109/LED.2012.2210022
  20. A. Lisauskas et al., "Terahertz imaging with Si MOSFET focal-plane arrays," in Proc. SPIE, 2009, vol. 7215, no. 6.
  21. L. Tohme, G. Ducournau, S. Blin, D. Coquillat, P. Nouvel, A. Penarier, W. Knap, and J. F. Lampin, "0.2 THz wireless communication using plasmawave transistor detector," in Proc. IRMMW-THz, 2013.
  22. M. Dyakonov and M. Shur, "Shallow water analogy for a ballistic field effect transistor: New mechanism of plasma wave generation by dc current," Phys. Rev. Lett., vol. 71, pp. 2465-2468, Oct. 1993. https://doi.org/10.1103/PhysRevLett.71.2465
  23. M. I. Dyakonov and M. S. Shur, "Plasma wave electronics: Novel terahertz devices using two dimensional electron fluid," IEEE Trans. Electron Devices, vol. 43, no. 10, pp. 1640-1645, 1996. https://doi.org/10.1109/16.536809
  24. J.-Q. Lu and M. S. Shur, "Terahertz detection by high-electron-mobility transistor: Enhancement by drain bias," Appl. Physics Lett., vol. 78, no. 17, pp. 2587-2588, 2001. https://doi.org/10.1063/1.1367289
  25. W. Knap, Y. Deng, S. Rumyantsev, and M. Shur, "Resonant detection of subterahertz and terahertz radiation by plasma waves in submicron fieldeffect transistors," Appl. Physics Lett., vol. 81, no. 24, pp. 4637-4639, 2002. https://doi.org/10.1063/1.1525851
  26. A. El Fatimy, F. Teppe, N. Dyakonova, W. Knap, D. Seliuta, G. Valusis, A. Shchepetov, Y. Roelens, S. Bollaert, A. Cappy, et al., "Resonant and voltage-tunable terahertz detection in InGaAs InP nanometer transistors," Appl. Physics Lett., vol. 89, no. 13, p.131926, 2006. https://doi.org/10.1063/1.2358816
  27. M. Dyakonov, "Generation and detection of Terahertz radiation by field effect transistors," Comptes Rendus Physique, vol. 11, no. 7, pp. 413-420, 2010. https://doi.org/10.1016/j.crhy.2010.05.003
  28. S. Boubanga-Tombet, F. Teppe, D. Coquillat, S. Nadar, N. Dyakonova, H. Videlier, W. Knap, A. Shchepetov, C. Gardes, Y. Roelens, et al., "Current driven resonant plasma wave detection of terahertz radiation: Toward the Dyakonov-Shur instability," Appl. Physics Lett., vol. 92, no. 21, p. 212101, 2008. https://doi.org/10.1063/1.2936077
  29. A. Muravjov, D. Veksler, X. Hu, R. Gaska, N. Pala, H. Saxena, R. Peale, and M. Shur, "Resonant terahertz absorption by plasmons in gratinggate GaN HEMT structures," in Proc. SPIE DSS, 2009, p. 73110D.
  30. P. Nouvel, H. Marinchio, J. Torres, C. Palermo, D. Gasquet, L. Chusseau, L. Varani, P. Shiktorov, E. Starikov, and V. Gruzinskis, "Terahertz spectroscopy of plasma waves in high electron mobility transistors," J. Appl. Physics, vol. 106, no. 1, p. 013717, 2009. https://doi.org/10.1063/1.3159032
  31. R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, et al., "Plasma wave detection of terahertz radiation by silicon field effects transistors: Responsivity and noise equivalent power," Appl. Physics Lett., vol. 89, no. 25, p. 253511, 2006. https://doi.org/10.1063/1.2410215
  32. E. Ojefors, U. R. Pfeiffer, A. Lisauskas, and H. G. Roskos, "A 0.65 THz focal-plane array in a quarter-micron CMOS process technology," IEEE J. Solid-State Circuits, vol. 44, no. 7, pp. 1968-1976, 2009. https://doi.org/10.1109/JSSC.2009.2021911
  33. L. Romeo, D. Coquillat, M. Pea, D. Ercolani, F. Beltram, L. Sorba, W. Knap, A. Tredicucci, and M. Vitiello, "Nanowire-based field effect transistors for terahertz detection and imaging systems," Nanotechnol., vol. 24, no. 21, p. 214005, 2013. https://doi.org/10.1088/0957-4484/24/21/214005
  34. L. Vicarelli, M. Vitiello, D. Coquillat, A. Lombardo, A. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, "Graphene field-effect transistors as room-temperature terahertz detectors," Nature Materials, 2012.
  35. T. Watanabe, S. B. Tombet, Y. Tanimoto, Y. Wang, H. Minamide, H. Ito, D. Fateev, V. Popov, D. Coquillat, W. Knap, et al, "Ultrahigh sensitive plasmonic terahertz detector based on an asymmetric dual-grating gate HEMT structure," Solid-State Electron., 2012.
  36. V. Popov, D. Fateev, T. Otsuji, Y. Meziani, D. Coquillat, and W. Knap, "Plasmonic terahertz detection by a double-grating-gate field-effect transistor structure with an asymmetric unit cell," Appl. Physics Lett., vol. 99, no. 24, p. 243504, 2011. https://doi.org/10.1063/1.3670321
  37. D. But, C. Drexler, N. Dyakonova, O. Drachenko, S. Ganichev, and W. Knap, "Nonlinear photoresponse of FET THz broadband detectors at high power irradiation," in Proc. IRMMW-THz (Mainz, Germany), 2013.
  38. W. Knap, S. Rumyantsev, M. S. Vitiello, D. Coquillat, S. Blin, N. Dyakonova, M. Shur, F. Teppe, A. Tredicucci, and T. Nagatsuma, "Nanometer size field effect transistors for terahertz detectors," Nanotechnology, vol. 24, no. 21, p. 214002, 2013. https://doi.org/10.1088/0957-4484/24/21/214002
  39. T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, T. Nagatsuma, N. Shimizu, and Y. Miyamoto, "InP/InGaAs uni-traveling-carrier photodiodes," IEICE Trans. Electron., vol. 83, no. 6, pp. 938-949, 2000.
  40. A. Hirata, H. Ishii, and T. Nagatsuma, "Design and characterization of a 120-GHz millimeter-wave antenna for integrated photonic transmitters," IEEE Trans. Microw. Theory Tech., vol. 49, no. 11, pp. 2157-2162, 2001. https://doi.org/10.1109/22.963153
  41. T. Nagatsuma, S. Horiguchi, Y. Minamikata, Y. Yoshimizu, S. Hisatake, S. Kuwano, N. Yoshimoto, J. Terada, and H. Takahashi, "Terahertz wireless communications based on photonics technologies," Opt. Express, vol. 21, pp. 23736-23747, Oct. 2013. https://doi.org/10.1364/OE.21.023736