Browse > Article
http://dx.doi.org/10.1109/JCN.2013.000104

Wireless Communication at 310 GHz using GaAs High-Electron-Mobility Transistors for Detection  

Blin, Stephane (IES, UMR 5214 CNRS, Universite Montpellier 2)
Tohme, Lucie (IES, UMR 5214 CNRS, Universite Montpellier 2)
Coquillat, Dominique (L2C, UMR 5221 CNRS, Universite Montpellier 2)
Horiguchi, Shogo (Graduate School of Engineering Science, Osaka University)
Minamikata, Yusuke (Graduate School of Engineering Science, Osaka University)
Hisatake, Shintaro (Graduate School of Engineering Science, Osaka University)
Nouvel, Philippe (IES, UMR 5214 CNRS, Universite Montpellier 2)
Cohen, Thomas (IES, UMR 5214 CNRS, Universite Montpellier 2)
Penarier, Annick (IES, UMR 5214 CNRS, Universite Montpellier 2)
Cano, Fabrice (IES, UMR 5214 CNRS, Universite Montpellier 2)
Varani, Luca (IES, UMR 5214 CNRS, Universite Montpellier 2)
Knap, Wojciech (L2C, UMR 5221 CNRS, Universite Montpellier 2)
Nagatsuma, Tadao (Graduate School of Engineering Science, Osaka University)
Publication Information
Abstract
We report on the first error-free terahertz (THz) wireless communication at 0.310 THz for data rates up to 8.2 Gbps using a 18-GHz-bandwidth GaAs/AlGaAs field-effect transistor as a detector. This result demonstrates that low-cost commercially-available plasma-wave transistors whose cut-off frequency is far below THz frequencies can be employed in THz communication. Wireless communication over 50 cm is presented at 1.4 Gbps using a uni-travelling-carrier photodiode as a source. Transistor integration is detailed, as it is essential to avoid any deleterious signals that would prevent successful communication. We observed an improvement of the bit error rate with increasing input THz power, followed by a degradation at high input power. Such a degradation appears at lower powers if the photodiode bias is smaller. Higher-data-rate communication is demonstrated using a frequency-multiplied source thanks to higher output power. Bit-error-rate measurements at data rates up to 10 Gbps are performed for different input THz powers. As expected, bit error rates degrade as data rate increases. However, degraded communication is observed at some specific data rates. This effect is probably due to deleterious cavity effects and/or impedance mismatches. Using such a system, realtime uncompressed high-definition video signal is successfully and robustly transmitted.
Keywords
Communications technology; FET; HEMT; plasma waves; receivers; THz;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 T. Nagatsuma, S. Horiguchi, Y. Minamikata, Y. Yoshimizu, S. Hisatake, S. Kuwano, N. Yoshimoto, J. Terada, and H. Takahashi, "Terahertz wireless communications based on photonics technologies," Opt. Express, vol. 21, pp. 23736-23747, Oct. 2013.   DOI
2 M. Dyakonov and M. Shur, "Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid," IEEE Trans. Electron Devices, vol. 43, no. 3, pp. 380-387, 1996.   DOI   ScienceOn
3 W. Knap andM. I. Dyakonov, "Field-effect transistor for terahertz applications," Handbook of terahertz technology for imaging, sensing and communications, Woodhead Publishing Series in Electronic and Optical Materials, no. 34, 2013.
4 W. Knap et al., "Field effect transistors for terahertz detection: Physics and first imaging applications," J. Infrared Millimeter Terahertz Waves, vol. 30, pp. 1319-1337, 2009.
5 J. Antes, S. Konig, A. Leuther, H. Massler, J. Leuthold, O. Ambacher, and I. Kallfass, "220 GHz wireless data transmission experiments up to 30 Gbit/s," in Proc. IEEE MTT-S International Microwave Symposium Digest (MTT), pp. 1.3, 2012.
6 G. Ducournau, A. Beck, F. Pavanello, P. Latzel, T. Akalin, E. Peytavit, M. Zaknoune, and J. Lampin, "22 Gbit/s wireless link at 400 GHz using photonic transmitter and heterodyne electronic detection," in Proc. 7th Terahertz Days, 2013.
7 T. J. Chung and W.-H. Lee, "10-Gbit/s wireless communication system at 300 GHz," ETRI J., vol. 35, no. 3, 2013.
8 L. Tohme, S. Blin, P. Nouvel, L. Varani, and A. Penarier, "Roomtemperature terahertz heterodyne mixing in GaAs commercial transistors," in Proc. IRMMW-THz (Mainz, Germany), 2013.
9 H.-J. Song, K. Ajito, A. Wakatsuki, Y. Muramoto, N. Kukutsu, Y. Kado, and T. Nagatsuma, "Terahertz wireless communication link at 300 GHz," in Proc. Int. Topical Meeting Microw. Photon. (MWP), 2010, pp. 42.45.
10 F. Schuster, D. Coquillat, H. Videlier, M. Sakowicz, F. Teppe, L. Dussopt, B. Giffard, T. Skotnicki, and W. Knap, "Broadband terahertz imaging with highly sensitive silicon CMOS detectors," Optics Express, vol. 19, no. 8, pp. 7827-7832, 2011.   DOI
11 S. Blin, F. Teppe, L. Tohme, S. Hisatake, K. Arakawa, P. Nouvel, D. Coquillat, A. Penarier, J. Torres, L. Varani, W. Knap, and T. Nagatsuma, "Plasma-wave detectors for terahertz wireless communication," IEEE Electron Device Lett., vol. 33, no. 10, pp. 1354-1356, 2012.   DOI   ScienceOn
12 L. Moeller et al., "2.5 Gb/s error-free transmission at 625 GHz using a narrow-bandwidth 1 mWTHz source," in Proc. Tech. Dig. URSI General Assembly and Scientific Symposium, 2001.
13 K. Ishigaki et al, "Direct intensity modulation and wireless data transmission characteristics of terahertz-oscillating resonant tunnelling diodes," Electron. Lett., vol. 48, no. 10, pp. 582-583, 2012.   DOI   ScienceOn
14 V. Popov, D. Fateev, T. Otsuji, Y. Meziani, D. Coquillat, and W. Knap, "Plasmonic terahertz detection by a double-grating-gate field-effect transistor structure with an asymmetric unit cell," Appl. Physics Lett., vol. 99, no. 24, p. 243504, 2011.   DOI   ScienceOn
15 R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, et al., "Plasma wave detection of terahertz radiation by silicon field effects transistors: Responsivity and noise equivalent power," Appl. Physics Lett., vol. 89, no. 25, p. 253511, 2006.   DOI   ScienceOn
16 E. Ojefors, U. R. Pfeiffer, A. Lisauskas, and H. G. Roskos, "A 0.65 THz focal-plane array in a quarter-micron CMOS process technology," IEEE J. Solid-State Circuits, vol. 44, no. 7, pp. 1968-1976, 2009.   DOI   ScienceOn
17 L. Romeo, D. Coquillat, M. Pea, D. Ercolani, F. Beltram, L. Sorba, W. Knap, A. Tredicucci, and M. Vitiello, "Nanowire-based field effect transistors for terahertz detection and imaging systems," Nanotechnol., vol. 24, no. 21, p. 214005, 2013.   DOI   ScienceOn
18 L. Vicarelli, M. Vitiello, D. Coquillat, A. Lombardo, A. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, "Graphene field-effect transistors as room-temperature terahertz detectors," Nature Materials, 2012.
19 T. Watanabe, S. B. Tombet, Y. Tanimoto, Y. Wang, H. Minamide, H. Ito, D. Fateev, V. Popov, D. Coquillat, W. Knap, et al, "Ultrahigh sensitive plasmonic terahertz detector based on an asymmetric dual-grating gate HEMT structure," Solid-State Electron., 2012.
20 D. But, C. Drexler, N. Dyakonova, O. Drachenko, S. Ganichev, and W. Knap, "Nonlinear photoresponse of FET THz broadband detectors at high power irradiation," in Proc. IRMMW-THz (Mainz, Germany), 2013.
21 W. Knap, S. Rumyantsev, M. S. Vitiello, D. Coquillat, S. Blin, N. Dyakonova, M. Shur, F. Teppe, A. Tredicucci, and T. Nagatsuma, "Nanometer size field effect transistors for terahertz detectors," Nanotechnology, vol. 24, no. 21, p. 214002, 2013.   DOI   ScienceOn
22 T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, T. Nagatsuma, N. Shimizu, and Y. Miyamoto, "InP/InGaAs uni-traveling-carrier photodiodes," IEICE Trans. Electron., vol. 83, no. 6, pp. 938-949, 2000.
23 A. Hirata, H. Ishii, and T. Nagatsuma, "Design and characterization of a 120-GHz millimeter-wave antenna for integrated photonic transmitters," IEEE Trans. Microw. Theory Tech., vol. 49, no. 11, pp. 2157-2162, 2001.   DOI   ScienceOn
24 L. Tohme, G. Ducournau, S. Blin, D. Coquillat, P. Nouvel, A. Penarier, W. Knap, and J. F. Lampin, "0.2 THz wireless communication using plasmawave transistor detector," in Proc. IRMMW-THz, 2013.
25 W. Knap, Y. Deng, S. Rumyantsev, and M. Shur, "Resonant detection of subterahertz and terahertz radiation by plasma waves in submicron fieldeffect transistors," Appl. Physics Lett., vol. 81, no. 24, pp. 4637-4639, 2002.   DOI   ScienceOn
26 M. Dyakonov and M. Shur, "Shallow water analogy for a ballistic field effect transistor: New mechanism of plasma wave generation by dc current," Phys. Rev. Lett., vol. 71, pp. 2465-2468, Oct. 1993.   DOI   ScienceOn
27 M. I. Dyakonov and M. S. Shur, "Plasma wave electronics: Novel terahertz devices using two dimensional electron fluid," IEEE Trans. Electron Devices, vol. 43, no. 10, pp. 1640-1645, 1996.   DOI   ScienceOn
28 J.-Q. Lu and M. S. Shur, "Terahertz detection by high-electron-mobility transistor: Enhancement by drain bias," Appl. Physics Lett., vol. 78, no. 17, pp. 2587-2588, 2001.   DOI   ScienceOn
29 A. El Fatimy, F. Teppe, N. Dyakonova, W. Knap, D. Seliuta, G. Valusis, A. Shchepetov, Y. Roelens, S. Bollaert, A. Cappy, et al., "Resonant and voltage-tunable terahertz detection in InGaAs InP nanometer transistors," Appl. Physics Lett., vol. 89, no. 13, p.131926, 2006.   DOI   ScienceOn
30 M. Dyakonov, "Generation and detection of Terahertz radiation by field effect transistors," Comptes Rendus Physique, vol. 11, no. 7, pp. 413-420, 2010.   DOI   ScienceOn
31 S. Boubanga-Tombet, F. Teppe, D. Coquillat, S. Nadar, N. Dyakonova, H. Videlier, W. Knap, A. Shchepetov, C. Gardes, Y. Roelens, et al., "Current driven resonant plasma wave detection of terahertz radiation: Toward the Dyakonov-Shur instability," Appl. Physics Lett., vol. 92, no. 21, p. 212101, 2008.   DOI   ScienceOn
32 A. Muravjov, D. Veksler, X. Hu, R. Gaska, N. Pala, H. Saxena, R. Peale, and M. Shur, "Resonant terahertz absorption by plasmons in gratinggate GaN HEMT structures," in Proc. SPIE DSS, 2009, p. 73110D.
33 P. Nouvel, H. Marinchio, J. Torres, C. Palermo, D. Gasquet, L. Chusseau, L. Varani, P. Shiktorov, E. Starikov, and V. Gruzinskis, "Terahertz spectroscopy of plasma waves in high electron mobility transistors," J. Appl. Physics, vol. 106, no. 1, p. 013717, 2009.   DOI   ScienceOn
34 T. Kleine-Ostmann and T. Nagatsuma, "A review on terahertz communications research," J. Infrared Milimeter Terahertz Waves, vol. 32, no. 2, pp. 143-171, 2011.   DOI
35 A. Lisauskas et al., "Terahertz imaging with Si MOSFET focal-plane arrays," in Proc. SPIE, 2009, vol. 7215, no. 6.
36 H. Song and T. Nagatsuma, "Present and future of terahertz communications," IEEE Trans. Terahertz Sci. Technol., vol. 1, no. 1, pp. 256-263, 2011.   DOI   ScienceOn
37 J. Federici and L. Moeller, "Review of terahertz and subterahertz wireless communications," J. Appl. Physics, vol. 107, no. 11, p. 111101, 2010.   DOI   ScienceOn
38 C. Jansen, S. Priebe, C. Moller, M. Jacob, H. Dierke, M. Koch, and T. Kurner, "Diffuse scattering from rough surfaces in THz communication channels," IEEE Trans. Terahertz Sci. Technol., vol. 1, no. 2, pp. 462-472, 2011.   DOI   ScienceOn
39 T. Kurner, "Towards future THz communications systems," Int. J. Terahertz Sci. Technol., vol. 1, no. 2, pp. 462-472, 2011.   DOI   ScienceOn
40 D. Dragoman and M. Dragoman, "Terahertz fields and applications," Progress in Quantum Electronics, vol. 28, no. 1, pp. 1-6, 2004.   DOI   ScienceOn
41 C. Jastrow et al., "300 GHz transmission system," Electron. Lett., vol. 44, no. 3, pp. 213-214, 2008.   DOI   ScienceOn