DOI QR코드

DOI QR Code

Channel Model and Wireless Link Performance Analysis for Short-Range Wireless Communication Applications in the Terahertz Frequency

테라헤르츠 대역 주파수에서 근거리 무선 통신 응용을 위한 채널 모델 및 무선 링크 성능 분석

  • Published : 2009.09.30

Abstract

In this paper, channel model and wireless link performance analysis for the short-range wireless communication system applications in the terahertz frequency which is currently interested in many countries will be described. In order to realize high data rates above 10 Gbps, the more wide bandwidths will be required than the currently available bandwidths of millimeter-wave frequencies, therefore, the carrier frequencies will be pushed to THz range to obtain larger bandwidths. From the THz atmospheric propagation characteristics based on ITU-R P.676-7, the available bandwidths were calculated to be 68, 48 and 45 GHz at the center frequencies of 220, 300 and 350 GHz, respectively. With these larger bandwidths, it was shown from the simulation that higher data rate above 10 Gbps can be achieved using lower order modulation schemes which have spectral efficiency of below 1. The indoor propagation delay spread characteristics were analyzed using a simplified PDP model with respect to building materials. The RMS delay spread was calculated to be 9.23 ns in a room size of $6\;m(L){\times}5\;m(W){\times}2.5\;m(H)$ for the concrete plaster with TE polarization, which is a similar result of below 10 ns from the Ray-Tracing simulation in the reference paper. The indoor wireless link performance analysis results showed that receiver sensitivity was $-56{\sim}-46\;dBm$ over bandwidth of $5{\sim}50\;GHz$ and antenna gain was calculated to be $26.6{\sim}31.6\;dBi$ at link distance of 10m under the BPSK modulation scheme. The maximum achievable data rates were estimated to be 30, 16 and 12 Gbps at the carrier frequencies of 220, 300 and 350 GHz, respectively, under the A WGN and LOS conditions, where it was assumed that the output power of the transmitter is -15 dBm and link distance of 1 m with BER of $10^{-12}$. If the output power of transmitter is increased, the more higher data rate can be achieved than the above results.

본 논문에서는 현재 주목을 받고 있는 테라헤르츠 대역의 주파수에서 근거리 무선 통신 응용을 위한 채널 모델과 무선 링크의 성능 분석에 대하여 서술한다. 10 Gbps 이상의 전송 속도를 실현하기 위해서는 주파수 대역폭이 기존의 밀리미터파에서 사용하는 주파수 대역폭보다 더 넓은 대역폭이 필요하며, 이 대역폭을 얻기 위해서는 테라헤르츠 주파수 대역으로 자연적으로 옮겨가지 않을 수 없다. ITU-R P.676-7 모델을 이용하여 테라헤르츠 대역의 대기 전파 감쇠 특성 분석 결과, 중심 주파수 220, 300, 350 GHz에서 약 68, 48, 45 GHz의 주파수 대역폭이 가용하며, 스펙트럼 효율이 1 이하인 변조 방식으로도 10 Gbps 이상의 데이터 속도를 얻을 수 있음을 시뮬레이션을 통하여 확인하였다. 간략화 PDP 모델을 이용하여 실내 공간의 건물 재질에 따른 지연 특성을 분석하였다. 실내 공간의 크기 $6\;m(L){\times}5\;m(W){\times}2.5\;m(H)$에서 콘크리트 벽의 경우 TE 편파에서 RMS 지연 확산은 9.23 ns였다. 이 결과는 참고문헌의 Ray-Tracing 시뮬레이션에서 얻은 10 ns 이내에 근접한다. 옥내 무선 링크 성능 분석 결과, 수신기의 감도는 BPSK 변조 방식을 사용하는 경우 대역폭 $5{\sim}50\;GHz$에 대하여 $-56{\sim}-46\;dBm$이고, 안테나 이득은 10 m 링크에서 $26.6{\sim}31.6\;dBi$였다. AWGN 채널과 LOS 환경을 가정할 때 송신기 출력 -15dBm에서 캐리어 주파수 220, 300, 350 GHz일 때 최대 달성 가능한 데이터 속도는 각각 30, 16, 12 Gbps였다. 이 결과는 BPSK 변조 방식을 사용하여 1 m 링크에서 얻은 결과이다. BER은 $10^{-12}$으로 가정하였고, 송신기 출력을 증가시키면 더욱 높은 데이터 속도를 얻을 수 있다.

Keywords

References

  1. Peter H. Siegel, "Terahertz technology", IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 3, pp. 910-928, Mar. 2002 https://doi.org/10.1109/22.989974
  2. S. Cherry, "Edholm's law of bandwidth", IEEE Spectrum, 41, 7, p. 50, Jul. 2004 https://doi.org/10.1109/MSPEC.2004.1309810
  3. http://www.engadget.com/2008/01/14/33-megapixel- super-hi-vision-ultra-hdtv-could-be-on-the-air-in/
  4. T. Kleine-Ostmann et al., "Audio signal transmission over THz communication channel using semiconductor modulator", Electronics Letters, vol. 40 no. 2, Jan. 2004
  5. www.tcl.tu-bs.de
  6. C. Jastrow et al., "300 GHz transmission system", Electronics Letters, vol. 44 no. 3, Jan. 2008 https://doi.org/10.1049/el:20083359
  7. Akihiko Hirata et al., "120-GHz wireless link using photonic techniques", Journal of Lightwave Technology, vol. 21, no. 10, pp. 2145-2153, Oct. 2003 https://doi.org/10.1109/JLT.2003.814395
  8. Akihiko Hirata et al., "High-directivity photonic emitter using photodiode module integrated with HEMT amplifier for 10-Gbit/s wireless link", IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 8, pp. 1843-1850, Aug. 2004 https://doi.org/10.1109/TMTT.2004.831581
  9. Akihiko Hirata et al., "120-GHz-band millimeter- wave photonic wireless link for 10-Gb/s data transmission", IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 5, pp. 1937- 1944, May 2006 https://doi.org/10.1109/TMTT.2006.872798
  10. http://ieee802.org/15/pub/IGthz.html
  11. Radoslaw Piesiewicz et al., "Short-range ultra-broadband terahertz concepts and perspective", IEEE Antennas and Propagation Magazine, vol. 49, no. 6, pp. 24-39, Dec. 2007 https://doi.org/10.1109/MAP.2007.4455844
  12. Radoslaw Piesiewicz et al., "THz channel characterization for future wireless gigabit indoor communication systems", Terahertz and Gigahertz Electronics and Photonics IV, Proceedings of SPIE, vol. 5727, pp. 166-176 https://doi.org/10.1117/12.588555
  13. Radoslaw Piesiewicz et al., "Scattering analysis for the modeling of THz communication systems", IEEE Transactions on Antennas and Propagation, vol. 55, no. 11, pp. 3002-3009. Nov. 2007 https://doi.org/10.1109/TAP.2007.908559
  14. Christian Jansen et al., "The impact of reflections from stratified building materials on the wave propagation in future indoor terahertz communication systems", IEEE Transactions on Antennas and Propagation, vol. 56, no. 5, pp. 1413-1419, May 2008 https://doi.org/10.1109/TAP.2008.922651
  15. Radoslaw Piesiewicz et al., "Performance analysis of future multigigabit wireless communication systems at THz frequencies with highly directive antennas in realistic indoor environments", IEEE Journal of Selected Topics in Quantum Electronics, vol. 14, no. 2, pp. 421-430, Mar./Apr. 2008 https://doi.org/10.1109/JSTQE.2007.910984
  16. Thomas Kurner et al., "An integrated simulation environment for the investigation id future THz communication systems: Extended version", Simulation, vol. 84, no. 2/3, pp. 123-130
  17. A. Tessmann et al., "Metamorphic MMICs for operation beyond 200 GHz", EuMA Proceedings of the 3rd European Microwave Integrated Circuits Conference, Amsterdam, Netherlands, pp. 210-213, Oct. 2008
  18. Arnulf Leuther et al., "50 nm MHEMT technology for G- and H-Band MMICs", 2007 International Conference on Indium Phosphide and Related Materials Conference Proceedings TuA2-4 19th IPRM 14-18, Matsue, Japan, pp. 24-27, May 2007
  19. Recommendation ITU-R P.676-7, "Attenuation by atmospheric gases", 2007
  20. Recommendation ITU-R P.838-3, "Specific attenuation model for rain for use in prediction methods", 2005
  21. Simon R. Saunders, Antennas and Propagation for Wireless Communication Systems, John Wiley & Sons, Ltd., p. 93
  22. ITU-R Recommendations, "Characeristics of precipitation for propagation modeling", ITU-R, Geneva, p. 837-3, 2001
  23. Peter F. Driessen, "Gigabit/s indoor wireless systems with directional antenna", IEEE Transactions on Communications, vol. 44, no. 8, pp. 1034-1043, Aug. 1996 https://doi.org/10.1109/26.535443
  24. Radoslaw Piesiewicz et al., "Ray-tracing simulations to determine indoor channel characteristics in THz Pico cells coated with dielectric mirrors", Joint 29th International Conference on Infrared and Millimeter Waves and 12th International Conference on Terahertz Electronics, pp. 539-540, 2004
  25. Recommendation ITU-R P.1238-5, "Propagation data and prediction methods for the planning of indoor radiocommunication systems and radio local area networks in the frequency range 900 MHz to 100 GHz", 2007
  26. Christopher L. Holloway et al., "A simplified model for predicting the power delay profile characteristics of an indoor radio propagation channel", NTIA Report 98-353, US Department of Commerce, Aug. 1988
  27. Recommendation ITU-R P.1407-3, "Multipath propagation and parameterization of its characteristics", 2007
  28. Christian Jansen et al., "The impact of reflections from stratified building materials on the wave propagation in future indoor terahertz communication systems", IEEE Transactions on Antennas and Propagation, vol. 56, no. 5, pp. 1413-1419, May 2008 https://doi.org/10.1109/TAP.2008.922651
  29. R. Piesiewicz et al., "Terahertz characterisation of building materials", Electronics Letters, 1st, vol. 41 no. 18, Sep. 2005
  30. R. Piesiewicz et al., "Properties of building and plastic materials in the THz range", International Journal of Infrared and Millimeter Waves(2007) 28, DOI 10.1007/s10762-007-9217-9, Springer, pp. 363-371, 2007
  31. Lionel Duvilllaret et al., "A reliable method for extraction of material parameters in terahertz time-domain spectroscopy", IEEE Journal of Sel-ected Topics in Quantum Electronics, vol. 2, no. 3, pp. 739-746, Sep. 1996 https://doi.org/10.1109/2944.571775
  32. R. M. Emrick, J. L. Volakis, "Antenna requirements for short range high speed wireless systems operating at millimeter-wave frequencies, microwave symposium digest, IEEE MTT-S International, pp. 974-977, 2006
  33. John S. Seybold, Introduction to RF Propagation, John Wiley & Sons Inc., p. 315, 2005
  34. Chan-Ping Lim et al., "Indoor propagation models based on rigorous methods for site-specific multipath environments", IEEE Transactions on Antennas and Propagation, vol. 54, no. 6, pp. 1718- 1725, Jun. 2006 https://doi.org/10.1109/TAP.2006.875493
  35. Mohamed-Slim Alouini et al., "A unified approach for calculating error rates of linearly modulated signals over generalized fading channels, IEEE Transactions on Communications, vol. 47, no. 9, pp. 1324-1334, Sep. 1999 https://doi.org/10.1109/26.789668
  36. John Anthes, "OOK, ASK and FSK modulation in the presence of an interfering signal", RF Monolithics, Inc., Dallas, Texas, Technical Report
  37. Simon Haykin, Communication Systems, 4th Edition, John Willey & Sons, Inc
  38. Intersil Applicatation note, AN9804-1, "Tutorial on Basic Link Budget Analysis", Jun. 1998