Browse > Article
http://dx.doi.org/10.5757/JKVS.2012.21.5.264

A Study on THz Generation and Detection Characteristics of InGaAs Semiconductor Epilayers  

Park, D.W. (Faculty of New Materials Engineering, Chonbuk National University)
Kim, J.S. (Faculty of New Materials Engineering, Chonbuk National University)
Noh, S.K. (Global Research Laboratory on Quantum Detector Technology, Korea Research Institute of Standards and Science)
Ji, Young-Bin (Faculty of Electrical and Electronic Enigneering, Korea Marine University)
Jeon, T.I. (Faculty of Electrical and Electronic Enigneering, Korea Marine University)
Publication Information
Journal of the Korean Vacuum Society / v.21, no.5, 2012 , pp. 264-272 More about this Journal
Abstract
In this paper, we report THz generation and detection characteristics investigated by InGaAs semiconductor epilayers, as results of a basic study obtained from the InGaAs-based THz transmitter/receiver (Tx/Rx). High-temperature and low-temperature (LT) grown InGaAs epilayers were prepared by the molecular beam epitaxy technique for the characterization of THz generation and detection, respectively, and the surface emission based on the photo-Dember effect was tried for THz generation. THz wave was generated by irradiation of a Ti:Sapphire fs pulse laser (60 ps/83 MHz), and a LT-GaAs Rx was used for the THz detection. The frequency band shown in the spectral amplitudes Fourier-transformed from the measured current signals was ranging in 0.5~2 THz, and the signal currents were exponentially increased with the Tx beam power. The THz detection characteristics of LT-InGaAs were investigated by using an Rx with dipole (5/20 ${\mu}m$) antenna, and the cutoff frequency was ~2 THz.
Keywords
Terahertz(THz); Transmitter; Receiver; Low-temperature growth; Indium gallium arsenide(InGaAs); Gallium arsenide(GaAs);
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 J. L. Pan, J. E. Mcmanis, T. Osadchy, L. Grober, J. M. Woodall, and P. J. Kindmann, Nature Mater. 2, 375 (2003).   DOI
2 R. Ascazubi, C. Shneider, I. Wilke, R. Pino, and P. S. Dutta, Phys. Rev. B 72, 045328 (2005).   DOI
3 C. Baker, I. S. Gregory, M. J. Evans, W. R. Tribe, E. H. Linfield, and M. Missous, Opt. Exp. 13, 9639 (2005).   DOI
4 I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. Giles, and M. Missous, IEEE J. Quantum Electron. 41, 717 (2005).   DOI
5 G. Huang, W. Guo, P. Bhattacharya, G. Ariyawansa, and A. G. U. Perera, Appl. Phys. Lett. 94, 101115 (2009).   DOI
6 S. J. Oh, C. Kang, I. Maeng, J. -H. Son, N. K. Cho, J. D. Song, W. J. Cho, and J. I. Lee, Appl. Phys. Lett. 90, 131906 (2007).   DOI
7 J. Sigmund, C. Sydlo, H. L. Hartnagel, N. Benker, H. Fuess, F. Rutz, T. Kleine-Ostmann, and M. Koch, Appl. Phys. Lett. 87, 252103 (2005).   DOI
8 V. Ryzhii, M. Ryzhii, V. Miltin, and T. Otsuji, J. Appl. Phys. 107, 054512 (2010).   DOI
9 P. V. V. Jayaweera, S. G. Matsik, A. G. U. Perera, Y. Paltiel, A. Sher, A. Raizman, H. Luo, and H. C. Liu, Appl. Phys. Lett. 90, 111109 (2007).   DOI
10 S. J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, Nature Commun. 2, 286 (2011).
11 S. J. Lee, S. K. Noh, S. H. Bae, and H. Jung, J. Korean Vacuum Soc. 20, 22 (2011).   DOI
12 H. W. Shin, J. W. Choe, J. O. Kim, S. J. Lee, C. S. Kim, and S. K. Noh, J. Korean Vacuum Soc. 20, 35 (2011).   DOI
13 C. S. Kim, J. H. Kim, K. J. Yee, D. H. Youn, and K. Y. Kang, J. Korean Phys. Soc. 55, 630 (2009).   DOI
14 S. Rihani, R Faulks, H. E. Beere, I. Farrer, M. Evans, D. A. Ritchie, and M. Pepper, Appl. Phys. Lett. 96, 091101 (2010).   DOI
15 L. Joulaud, J. Mangeney, N. Chimot, P. Crozat, G. Fishman, and J. C. Bourgoin, J. Appl. Phys. 97, 063515 (2005).   DOI
16 J. O. Kim, S. J. Lee, D. S. Yee, S. K. Noh, J. H. Shin, K. H. Park, C. Kang, C. -S. Kee, D. W. Park, C. S. Kim, and J. S. Kim, J. Korean Phys. Soc. 58, 1334 (2011).   DOI
17 Y. Ko, S. Sengupta, S. Tomasulo, P. Dutta, and I. Wilke, Phys. Rev. B 78, 035201 (2008).
18 M. Tonouchi, Nature Photonics 1, 97 (2007).   DOI   ScienceOn
19 G. Klatt, F. Hilser, W. Qiao, M. Beck, R. Gebs, A. Bartels, K. Huska, U. Lemmer, G. Bastian, M. B. Johnson, M. Fischer, J. Faist, and T. Dekorsy, Opt. Exp. 18, 4939 (2010).   DOI
20 K. Sakai (Ed.), Terahertz Optoelectronics (Springer, Germany, 2005).
21 S. Wang and X. -C. Zhang, J. Phys. D37, R1 (2004).
22 N. J. Kim, S.-P. Han, H. S. Ko, Y. A. Leem, H.-C. Ryu, C. W. Lee, D. H. Lee, M. Y. Jeon, S. K. Noh, and K. H. Park, Opt. Exp. 19, 15397 (2011).   DOI
23 S.-P. Han, H. S. Ko, N. J. Kim, H. -C. Ryu, C. W. Lee, Y. A. Leem, D. H. Lee, M. Y. Jeon, S. K. Noh, H. S. Chun, and K. H. Park, Opt. Lett. 36, 3094 (2011).   DOI
24 B. Sartorius, M. Schlak, D. Stanze, H. Roehle, H. Kuenzel, D. Schmidt, H.-G. Bach, R. Kunkel, and M. Schell, Opt. Exp. 17, 15001 (2009).   DOI
25 A. Tredicucci, R. Koehler, L. Mahler, H. E. Beere, E. H. Linfield, and D. A. Ritchie, Semicond. Sci. Technol. 20, S222 (2005).
26 K. L. Vodopyanov, Laser & Photon. Rev. 2, 11 (2009).
27 H. Rochle, R. J. B. Dietz, H. J. Hensel, J. Boettcher, H. Kuezel, D. Stanze, M. Schell, and B. Sartorius, Opt. Exp. 18, 2296 (2010).   DOI
28 G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Richie, and J. Faist, Laser & Photon Rev. 3, 45 (2009).   DOI