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Wireless Communication at 310 GHz using GaAs
High-Electron-Mobility Transistors for Detection
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Wojciech Knap, and

Abstract: We report on the first error-free terahertz (THz) wireless
communication at 0.310 THz for data rates up to 8.2 Gbps using
18-GHz-bandwidth GaAs/AlGaAs field-effect transistor as aletec-
tor. This result demonstrates that low-cost commerciallyavailable
plasma-wave transistors whose cut-off frequency is far belv THz
frequencies can be employed in THz communication. Wireless
communication over 50 cm is presented at 1.4 Gbps using a uni-
travelling-carrier photodiode as a source. Transistor inegration is
detailed, as it is essential to avoid any deleterious sigrethat would
prevent successful communication. We observed an improvesnt
of the bit error rate with increasing input THz power, follow ed by
a degradation at high input power. Such a degradation appear
at lower powers if the photodiode bias is smaller. Higher-d&a-
rate communication is demonstrated using a frequency-muiplied
source thanks to higher output power. Bit-error-rate measuements
at data rates up to 10 Ghps are performed for different input
THz powers. As expected, bit error rates degrade as data ratan-
creases. However, degraded communication is observed atnse
specific data rates. This effect is probably due to deleterigs cavity
effects and/or impedance mismatches. Using such a systeneal-
time uncompressed high-definition video signal is successfy and
robustly transmitted.

Index Terms. Communications technology, FET, HEMT, plasma
waves, receivers, THz.

I. INTRODUCTION

Tadao Nagatsuma

communications. First, THz beams spread more easily thanks
to diffraction [4], [5], as the Rayleigh length of THz beams
is smaller than that of infrared beams due to its larger wave-
length. Secondly, THz beams present smaller attenuatiam th
infrared beams in a typical indoor environment, as dry ana no
metallic materials are mostly transparent to THz waves. How
ever, THz communication systems suffer from the lack of-suit
able sources and detectors as mentioned in [6]. Conseguantl
significant effort must be devoted to the study and developme
of THz solid-state sources and detectors at frequencies-cor
sponding to atmosphere absorption minima, such as 300 GHz
and 650 GHz. In this paper, we investigate the use of plasma-
wave detector at 310 GHz for high-data-rate wireless conimun
cation.

Presently, the most widespread detector for THz communica-
tions is the Schottky barrier diode (SBD) [1], [7]-[9], mbin
due to its high sensitivity (typically few kV/W). Plasma-vea
transistors are alternative solutions for THz detectiothspe-
cific attractive features for high-speed communicatiorchsas
(i) lower output impedance favorable to impedance matching
with high-bandwidth amplifiers, (ii) easy on-chip intedoat
with demodulation circuit, and (iii) robustness to highumpHz
power. High-electron-mobility transistors (HEMT) operais
envelope detectors thanks to the non-resonant plasméaacti
tion (self-mixing effect) as detailed in [10]—[12]. Conseptly,
such detectors can operate in direct detection systemer €th
lutions such as heterodyne detection present attractiferpe

Wireless communication systems at data-rates exceeding ttances in terms of minimum detection level [13]-[15]. How-

of Gbps require carrier signals at frequencies higher thase

ever, they require stringent synchronization between dicall

presently used in widespread systems based on microwayscillators of the source and detector, or specific teclesqu

frequency carriers (mobile phones, Wi-Fi, etc.). A teréher

detection to correct for synchronization mismatch. The afse

based communication link is therefore a promising brealf-commercial HEMT for heterodyne detection has been already

through solution to achieve data-rates up to 100 Gbps as
scribed [1]-[3]. If compared to existing wireless opticait
munications that are based on higher-frequency carrieatsg
terahertz solutions present two significant advantagaadwor
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fifrestigated in [16] but our paper focuses on direct degecti

In Table 1, we present a rough overview of the room-
temperature performances at 300 GHz of SBD (as reported by
Virginia Diode Inc. and in [17]), Si MOSFET (reported in [18]
and GaAs HEMT (reported in [19]). In terms of sensitivityigt
important to notice that such numbers only give a rough com-
parison between these detectors as both measurements &nd me
rics are different. For instance, the typical SBD sengitivs
measured using a 25-dB-gain horn antenna, thus improvang th
collected THz power, while no horn antenna was used to eval-
uate transistor sensitivities. On the other hand, traosgstnsi-
tivities were calculated using the THz power which effeetjv
illuminates the transistor surface (as proposed in [20]ilev
all the THz power was used to calculate the sensitivity of the
SBD. However, if one calculates the transistor sensitiagyf it

1229-2370/13/$10.0q0) 2013 KICS
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Table 1. Reported sensitivity, noise-equivalent power (NEP) and

modulation bandwidth (BW) for SBD and transistor detectors at room THZ‘I:XLX

temperature for a 300-GHz-frequency signal. U
Detector Sensitivity NEP (W/Hz) BW y N/
SBD few kV/W 10712 ~ 20 GHz N G
Si MOSFET 5 kV/IW 1012 n/a H
GaAs HEMT 10 V/W < 13x107Y few GHz L,
. . . . DU: dc
was measured behind an identical horn antenna and using the 0 o

total THz power, We.WOUId obtain sensitivities of 3.9 kV/\NFig 1. Principle of THz detection based on high-electron-mobility tran-
and 27 V/W for the Si MOSFET and the GaAs HEMT, respec- ‘sistor. The THz signal induces an alternating voltage U,. The tran-
tively. Therefore, Table 1 remains useful because even by co sistor sensitivity is enhanced by applying a DC voltage between gate
recting the sensitivities their values remain of the sandeoof and source. A DC voltage proportional to the input THz amplitude is
magnitude than those reported in the table. Finally, naettie ~ Measured between the source and drain pads.
reported GaAs HEMT sensitivity and NEP are worst than those
of Si MOSFET, because the latter presents an integratedigow-
antenna. However, the GaAs HEMT was mounted on microsttipat propagate in the channel, and resonant plasma modbs can
lines, thus offering possible detection of amplitude-mlatkd excited, leading to a resonant narrowband and gate-biesste
signal at modulation frequencies up to 8 GHz. Therefore, thletection [23]-[26]. At room temperature, plasma waves are
transistor can compete with SBD as a detector for THz comnusually overdamped and the THz radiation causes only a car-
nications in terms of sensitivity and bandwidth. rier density perturbation that decays exponentially orstagice
As already mentioned, detection of amplitude-modulated the order of a few tens of nanometers. A more detailed de-
THz signals was recently demonstrated at 300 GHz usifgription of the physical mechanism of THz detection by FETs
plasma-wave transistors for a sine-wave modulation atfrag can be found in [27]. Currently, the most promising applaat
cies up to a few GHz [19]. The first data communication waappears to be room-temperature broadband THz detectibe in t
demonstrated very recently using a 200-GHz carrier frequemon-resonant regime for imaging and wireless communiaatio
for data rates ranging up to hundreds of Mbps [21]. In thisspapapplications.
we present for the first time a 310-GHz error-free (bit ereaer  Different kinds of FETSs, like GaAs HEMTSs [24], [28], GaN
lower than 10°!') transmission at data rates up to 8.2 Gbps uslEMTs [29], InGaAs HEMTs [24], [28], [30], silicon metal-
ing plasma-wave transistors as detectors. Such an impevemoxide-semiconductor FETs [18], [31], [32], or nanowire and
if compared to previously reported results [19], [21], iedoan graphene-based FETs [33], [34] with a gate length of therorde
increased effective sensitivity of the transistor asgediavith of hundreds of nanometers exhibit good broadband THz sensi-
the use of a horn antenna, along with careful electromagndivities and can reach a NEP that is competitive with the best
isolation thanks to a floating-ground isolation. conventional room-temperature THz detectors. Furtheynaiss
in FETs THz detection should address the improvement of the
THz coupling and improvement of the transistor design. Re-
Il. THZ DETECTION BASED ON PLASMA WAVES cently, double-grating-gate field-effect transistor staues with
A. Plasma-Wave Detector asymmetry between source and drain to enhance the photore-
] ] ] ] ] sponse have been designed and used for ultra-high serdgtive
The interest in using na_mp_mete_rfleld—effect transistoBSI®)  tection and imaging at frequencies up to 2 THz [35], [36].
for.THz applications was initiated in the early_19905 by tiext- Moreover, FET-based THz detectors can be used to detect
retical work of Dyakonov and Shur, who predicted that theneha|0\,\,_power continuous-wave THz signals due to their verydjoo
nel of a FET could act as a re_sonatorfor p_Iasma waves [22],\"5'3, but also high-power THz pulses delivered by a free-
was also sh.own that the nonlinear properties of the 2D plas'_@]@ctron laser. Therefore, their estimated damage thigso
in the transistor channel could be used for resonant detectiy 5 few hundreds of Watts [37], that is much higher than that o
and mixing of THz radiation [23]. Rectification and deteCspp. Moreover, FET detectors exhibit a linear response up to
tion of THz rad|at|.o_n is also possible in the non—resona_mecaan input intensity of about 1 kw/chnfollowed by a sub-linear
(low electron mobility) when plasma waves decay at a dis#angetection up to several MW/chj37], [38]. The saturation limit

smaller than the channel length. Fig. 1 shows the principle g,ifis to higher intensities when the frequency increases.
THz detection of transistors.When the THz radiation isexikd possibility to obtain ultrafast linear detection over aylarange

by the transistor through the metallic gate electrode, HEAC o howers is an important advantage for robust wireless comm
voltage produced between gate and source simultaneously MQcations.

ulates the carrier density and drift velocity in the chanméls
leads to nonlinearity and, as a result, a photoresponsaegpioe
the form of a DC voltage between source and drain. For hig
carrier-mobility devices (e.g., GaAs- and GaN- based FHTs a Integration of transistors for successful use in commuitina
cryogenic temperatures) the THz field can create plasmasvasgstems is absolutely necessary for two main reasons, &gst

Iﬁ. Integration
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tor was connected to subminiature version A (SMA) connec-
tors for biasing (gate—source voltage), and also for efitrgthe
detected signal (drain—source voltage) produced by thamnc
ing THz signal. In this paper, we used an ultra-low-noise &aA

Battery-powered
voltage regulator

SMA connector pseudomorphic HEMT for detection. The transistor is paekiag
in a low-parasitic surface-mountable ceramic package.tdpe
0 Transistor side of the cap was removed to improve detection (by suppress
placed at ing the ceramic absorption) and reduce the distance betilieen
waveguide contact waveguide and the transistor itself. Therefore, the tofaser
Waveguide of the transistor (where pads are visible) was directly eggo
Floating to the incoming beam. Finally, the HEMT was shielded within

a conductive enclosing to avoid electromagnetic couplibg-

spite such efforts, we observed significant ground coupgbng
sues. As a consequence, we used an external floating-ground
Output signal V, enclosure inside which we placed both the integrated tstorsi

and its battery-powered biasing supply.

/ ground

Fig. 2. Plasma-wave detector integration. A floating-ground metallic
case is used for electromagnetic shielding. The transistor is placed I1l. WIRELESS COMMUNICATION USING UTC-PD

at the waveguide output. A diagonal horn is used to collect larger
THz power. The transistor is biased using a battery-powered voltage EMITTER AND HEMT DETECTOR

regulator placed within the shielding case. A Experimental Setup

A communication link based on a uni-travelling-carrier
Hhoto—diode (UTC-PD) emitter is presented in Fig. 4. The UTC
PD emitter is excited by an optical beating generated by two
continuous-wave fiber-coupled external-cavity laser® [Eiser
signals are coupled using a 3-dB fiber coupler then amplified
using an erbium-doped fiber optical amplifier. The amplitude
modulation of the optical beating is achieved using a Mach-
Zehnder modulator. Precautions were taken in order to amjid

the transistor detects the incoming THz signal coupled & t
gate, this electrode should be isolated from any other spari
electromagnetic signals to assure reasonable signalite-na-
tio. Otherwise, HEMTs may amplify deleterious signals,esp
cially within their typical operation bandwidths (up to f&Hz
or tens of GHz), which significantly degrades the signahtise

ratio for high-data-rate communications. Secondly, thegis- ) e . .
tor dimensions are much smaller than the diffraction-kmit SPUrious radiation, especially at the modulation freqyehbe

upcoming beam waist. Therefore, it is necessary to assere ?ﬁ't'cal components such as the amplitude modulator, ifslam

smallest possible incoming beam waist to collect as muchapovv'.er’ anﬁ.trll;:. UTC1:_-hPDTz|a_|re cgrefllJIIy phacka_?CedF,)g] us assu_rﬁ}g ﬁ.f
as possible through the transistor surface. clent shielding. The THz signal at the UTC-PD output is eoll

In order to achieve both electromagnetic isolation and Bm’g{;ted using a 10-cm focal-lengthteflon lens, then focusthito

beam waist, the HEMT is packaged as shown in Fig. 2. | IEMT using an identical lens after propagation over 50 cne Th
proved collected THz power is assured thanks to a standard’i MT is biased with a DC voltage between the gate and the

put horn. The horn was designed to have a full 3-dB beamwi furce, and the drain-source signal produced by the intiden
of 12° and a gain of 20 dB. The length of the horn is 26 m Hz beam is amplified using different kinds of amplifiers de-

with an aperture at front side of 5 mm 5 mm. The angle of pending on the specifi_c appliga_ti_on such as system cha’rm:—ter
the pyramid construction is°’6The THz signal is then concen-1O™ uncompressed high-definition (HD) video real-timang-

trated on a small beam waist within a rectangular hollow \gave™'>S10": Of high-data-rate communications.
uide (transverse dimensions equal to 438 x 864 um), so
that a single linear polarization is coupled to the waveguid-
tegration was designed and machined thanks to digital micro In order to determine the most favorable frequency of the
machining. In order to evaluate its performances, the has wcommunication link, the sensitivity of the HEMT has been mea
mounted on a commercial frequency-multiplied source émgjtt sured from 220 GHz to 365 GHz. The THz signal is modulated
at 290 GHz and the far-field imaging of the emitted beam wasing a sine wave at 11 MHz (minimum emitting frequency of
measured using a HEMT transistor as a detector. In order-o ithe available synthesizer), and the detected signal isneeltla
prove the spatial resolution, this detector was not integka.e., using a 40-dB-gain amplifier with an input impedance of @M
no input horn was used. We conducted imaging experimentsaind a bandwidth of 10 MHz. The signal is observed by the elec-
a plane orthogonal to the optical axis using 2D motorizeeidin trical spectrum analyzer at 11 MHz by using a resolution band
stages. As shown in Fig. 3, the horn presents the expected pédth of 3 Hz. The amplitude modulation offers better aceyra
formances, namely a symmetric Gaussian-like beam with a than direct DC measurements. As shown in Fig. 5, the detected
vergence comparable to that of Gaussian-beam simulatiahs gignal is above 0 dBmV from 250 GHz to 340 GHz, thus of-
a commercial horn with similar design. fering a 90-GHz bandwidth which is suitable for communica-
Having confirmed the horn and waveguide quality, the THions. The noise level is measured by blocking the THz beam in
detector was implemented by placing the transistor as @esefront of the UTC-PD emitter. Using a resolution bandwidth of
possible to the waveguide output (about 500). The transis- 3 Hz, we measured a large signal-to-noise ratio of about 60 dB

B. Plasma-Wave Detector Spectral Sensitivity
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Fig. 3. Horn characterization at 290 GHz. The top graph represents

the far-field intensity measured in a plane orthogonal to the opti- UTC-PD frequency, GHz

cal axis for the home-made horn. The bottom graph presents a cut

of the intensity along the x direction for the home-made horn and  Fig. 5. Sensitivity dependence of the experimental setup. The UTC-PD

the commercial horn. The theoretical intensity is calculated using a emitting frequency is tuned and the detected signal at the transistor

Gaussian-beam propagation simulation. output is measured using the electrical spectrum analyzer. Noise is
measured by blocking the THz signal at the transistor input window.

from 250 GHz to 340 GHz. C. Characterization of the Baseband Modulation Bandwidth o

In order to evaluate the sensitivity of the transistor, tHeOJ the Plasma-Wave Detector

PD output power was measured using a calibrated THz powerAs shown in Fig. 5, broadband detection should allow for
meter based on a pyroelectric sensor. For this experimaat, high-bandwidth communication. In order to evaluate such a
sensor was directly connected to the output waveguide of thendwidth, the baseband modulation bandwidth of the system
UTC-PD (after horn removal) and the optical beating was nbas been measured as shown in Fig.7. A sine modulation of
modulated. As shown in Fig. 6, the sensitivity of the transithe THz amplitude is applied at increasing frequencies,thad

tor is about a few volts per watt. Note that such a sensitigity baseband signal amplitude is measured at the transistputout
underestimated as it does not take into account the freeespasing an electrical spectrum analyzer. We measure the ampli
loss (about 4-6 dB due to absorption and reflection at teflarde of the signal at the frequency of amplitude modulathan.
lenses). The sensitivity of the HEMT detector was increasétkse experiments, we used a 30-dB(bQ8-GHz amplifier.
thanks to the input horn, but could be further improved by 1-+lg. 7(a) shows a bandwidth of about 20 GHz, in agreement with
orders of magnitude using a 300-GHz antenna coupled to thransistor bandwidth of 18 GHz as given in the datasheet:In
gate and source terminals of the transistor, as previowsly der to assure that such a bandwidth is not related to the ienpli
ported for example on Silicon technology [18]. at detection side, the modulation setup and the detectlamse
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Fig. 7. Characterization of the baseband bandwidth of the plasma-
wave detector: (a) presents the detected signal and remaining cou-
pling amplitudes, the latter being measured by blocking the input
THz beam, as a function of the frequency of the sine-wave ampli-
tude modulation of the THz beam, (b) shows the signal-to-coupling
and signal-to-thermal-noise ratios, the thermal noise being the white
noise floor (amplifier thermal noise), and (c) shows the calibrated
characterization of the plasma-wave detector after careful calibration
of both modulation setup and amplifier.

were calibrated. The calibration measurement was condbgte
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Fig. 8. BER measurement at 1.4 Gbps as a function of squared pho-
tocurrent (proportional to input THz power) at different biases of the
UTC-PD. The emission frequency is 310 GHz. Error-free operation
was fixed at a level of 10— 12,

resented in Fig. 7(c). We observe a detector bandwidth aftabo
20 GHz if measured relatively to the low-frequency platdae
resonance observed at about 5 GHz is not clearly understipd y
but it could correspond to either an impedance mismatctoand/
the presence of deleterious optical cavities.

Fig. 7(b) also shows the signal-to-noise ratio, and theadign
to-coupling ratio, where the noise is the white noise (mainl
the amplifier thermal noise) and the coupling is the direet de
tection of the modulation signal by the transistor (with®tiz
carrier). Even if we observe an increase of the coupling at
higher modulation frequencies, the signal-to-couplirtgprax-
ceeds 20 dB thanks to the previously-described integratios
overpassing the direct-coupling limitation due to insusdit
shielding of the experimental setup on source side and etec
side [19].

D. Data Transmission

As the HEMT detector presents sufficient bandwidth and
signal-to-noise ratio, data transmission experiment Heen
conducted. Even if the baseband characterization showe@ go
signal-to-noise ratio, this value is measured within a sheaid-
width. High-data-rate communications require a large band
width, therefore successful communications are more ehgil
ing than detecting a sinusoidal modulation.

For communication experiments, a pseudo-random bit se-
guence has been used for binary on/off amplitude modula-
tion. The bit-length sequence was limited 26 — 1 because
unidentified deleterious low-frequency noise was obseated
higher bit lengths. The HEMT signal was amplified using a
50-dB 50%2 1-GHz amplifier followed by a limiting ampli-
fier. Error-free transmission up to 1.8 Gbps has been aadthjeve
and the dependence on THz power and UTC-PD biasing has
been evaluated as detailed in the following at a data rate of
1.38 Gbps.

THz power dependence on bit error rate (BER) was conducted

sending the modulated optical signal on a high-bandwidth phoy varying the input optical power at the UTC-PD emitter, and
todiode and amplifying the photodiode signal using the sameonitoring the photocurrent at the UTC-PD. As THz power is

amplifier. The calibrated characterization of the deteistoep-

expected to be proportional to the square of the photocyrren
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Fig. 9. Eye diagram at 1.4 Gbps using the UTC-PD source and the  Fig. 10. Calibration of the UTC-PD emitted power for BER measure-
plasma-wave detector at 310 GHz, during an error-free (BER < ments. The output power is measured as a function of the photocur-
10—19) transmission. rent at different UTC-PD biases.

10+
BER is plotted in Fig. 8 as a function of the squared photocur- 10%
rent. As can been seen in this experiment, the BER decreases
as the photocurrent increases, and error-free commuaoncisti
achieved at sufficiently high photocurrent, i.e. for suffiddy 5 107
high THz power. Error-free operation is indicated on therigu /M 10+
by arbitrary choosing a value of the BER of 16 on the graph, 109
such a value being 1-2 orders of magnitude below the minimum Lo
measurable BER. An opened eye diagram of successful error-
free communication is presented in Fig. 9. At high photoeuirr 1o
and low biasing of the UTC-PD, we observe in Fig. 8 a degra- 107 5 = = o e
dation of the BER. Further investigations showed that such a Power, pW
degradation is not correlated to a power drop but to a noise in
crease as will be discussed in the following. Fig. 11. BER at 310 GHz as a function of input THz power at different

Although an error-free communication was possible at suffi- UTC-PD biases. The data rate is 1.4 Gbps.

ciently high source power, we observed a significant timiitbey]
in Fig. 9, which is much larger than that of the system (1 ps or
less). This jitter contributes to the degradation of the BBR biases. Calibrated experiments allowed to identify thahsa
shown in Fig. 7, the frequency response of the detector ifiatot BER degradation is not related to a power drop. Further in-
from 3 GHz to 10 GHz. Therefore, the detected eye patternvéstigations were conducted by monitoring the emissior-spe
distorted at the transistor output, and the amplitude risisen- trum of the UTC-PD using a spectrum analyzer mixer. We ob-
verted into jitter through the limiting amplifier. If we inease served a degradation of the emission spectrum at high plietoc
the source power and the gain of the amplifier at the transistents, characterized by a significant increase of the whitsen
output, the jitter is reduced at the limiting amplifier outpas level. Therefore, at high photocurrents, the increaseefitea-
detailed in the following (see Fig. 18). sured THz power with photocurrent probably correspondsito a
The calibration of the UTC-PD output power was carefullincrease of the white noise rather than to an increase ofltze T
conducted in order to understand the origin of the BER degragarrier power.
tion at low biasing and high photocurrents. A calibrated pow  Higher-data-rate communication should be investigatet wi
meter was used to measure the average power for various bihe- UTC-PD emitter and the plasma-wave receiver, but this
ings at the data-rate of the experiment. Fig. 10 shows treat thould require a larger-bandwidth amplifier with identicalingy
average output power increases with photocurrent butatigar (50 dB) in order to compensate for the limited output power of
appears at high photocurrents. Such a saturation is matergvi the UTC-PD and the limited sensitivity of the transistor.
if the bias is low, as previously shown in the case of largseadl

signals [39] or continuous-wave operation [40]. IV. WIRELESS COMMUNICATION USING
Using the previously-presented calibration, the BER can FREQUENCY-MULTIPLIED SOURCE AND HEMT
be plotted as a function of the output power as shown in DETECTOR

Fig. 11. From this calibration, we conclude that at low pqwe L .

the BER does not depend on the UTC-PD biasing. As the incl Communication Link
dent power increases, the BER reduces until a given limirevhe As shown in the previous section, error-free transmission a
it starts degrading. This limit appears at lower powersdardr 310 GHz was demonstrated for the first time using a HEMT de-
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Fig. 12. Communication link using a frequency-multiplied source as 104
emitter and a plasma-wave transistor as detector.
10
tector, but the data rate was limited to 1.8 Gbps due to tfze rel
tively low output power of the UTC-PD emitter (about p@/ at 83 10°
a photocurrent of 7.25 mA) and the limited detector serigtiv s
(about 4 V/W). In order to investigate communications atieig 1610
data rates, a communication link using a frequency-migipl
source has been implemented as described in Fig. 12, dinilar
to the one reported in [41]. The frequency-multiplicatidrain 10
consists of a 28-40-GHz input amplifier, followed by two fre-
quency triplers. This chain is driven at its input by an eieat 02 025 03 035 Errorcfreel o450
signal which is generated by exciting a high-bandwidth phot Power, mW

diode with an amplitude-modulated optical beating. Thécapt _ _

beating generation is similar o the one previously usetitie %14, S evor e mesurenents ot 3067 Gz o & nction of Tz

UTC-PD emitter but in this case, the optical beating freqyen |evel of 10—13.

is of tens of GHz only as THz generation is then provided tisank

to the frequency-multiplied chain. Having a frequency riplik

cation factor of 9, driving the chain by an optical beatinghwi  calibrated using binary on/off modulated data in the foltogy

the 28-40 GHz range allows to generate a THz signal at freQUEER measurements.

cies between 250 and 360 GHz. In our experiments, we usegkig. 14 shows the evolution of the BER with THz power at

a 34.3-GHz optical beating, thus leading to a frequency ef tiifferent data rates. It exhibits the expected degradatiben

THz output signal of 308.7 GHz. In order to increase the dignahe THz power reduces and the data rate increases. For the

to-noise ratio, a 4-nm optical bandpass filter was used tod first time, an error-free communication is demonstrated us-

the amplified spontaneous emission at the amplifier outfné. Ting a plasma-wave receiver at data rates up to 8.2 Gbps. In

HEMT was biased with a DC voltage and its signal amplifieghis experiment, error-free transmission correspondsBER

using a 50 30-dB 18-GHz amplifier followed by a limiting Jower than 10! and is arbitrary fixed in the figure at a level

amplifier whose output is either observed using the spectrgn10-'3. Error-free regime is obtained for a THz power of

analyzer, a digital sampling oscilloscope or a BER measurer ghout 3504W at a data rate of 1 Gbps, and for 450V at

8.2 Ghps. One might note that a lower THz power was required

when using the UTC-PD source to achieve error-free propaga-
As discussed in the previous section, a careful calibratontion (see Fig.11), as a higher-gain (20-dB more) preamplifie

delicate thus this part needs to be described in detail. Awsh was used. Open eyed diagrams for error-free communication a

in Fig. 13, the output power calibration is conducted usiogla presented in Figs. 15 and 16 at 5.3 Gbps and 8.3 Ghps, respec-

ibrated pyro-electric sensor both for continuous-wavessian tively.

(DC) and modulated emission. As shown in this figure, the out- At higher data rates (9 Gbps and 10.1 Gbps), the BER seems

put power is calibrated as a function of the photocurrent-moto reach a plateau for high THz input powers. Separate ex-

itored at the photodiode. Since the calibration changesfsig periments were conducted in order to determine the maximum

cantly as optical signal are modulated or not, we used theepowit rate of the source and they showed a limitation at about

B. Calibration and BER Measurements
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Real-time transmitted
uncompressed HD video

4
>
g
o
=
A
Fig. 17. Photograph of the video transmission showing the frequency-
multiplied source on the right, the plasma-wave receiver on the left
< > (inside its electromagnetic shielding box), and two teflon lenses in-
500 ps between for collimation and focusing. The source amplitude is mod-
ulated by a real-time high-definition and uncompressed video sig-
Fig. 15. Error-free (BER < 10~ !1) eye diagram at 5.3 Gbps using the nal. Transmitted signal is observed on the TV screen at the back-
frequency-multiplied source and the plasma-wave receiver. ground.
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Fig. 16. Error-free (BER < 10— !1) eye diagram at 8.3 Gbps using the Fig. 18. Eye-diagram measured at a data rate identical to that of the
frequency-multiplied source and the plasma-wave receiver. high-definition uncompressed real-time video.

10 Gbps [41], mainly due to the limited bandwidth of the firsshould be easily transmitted as its clock frequency is atoun
stage power amplifier which drives the multiplier diodesdtge 1.5 GHz. In order to demonstrate such a transmission, the pat
generate higher harmoni¢8 x 3) in the frequency-multiplied tern generator was replaced by a DVD player whose high-
chain. Therefore, we believe that the plateau observedgat hijefinition multimedia interface (HDMI) signal was convetia
THz input powers (see Fig. 14) and high data rate is due to-a ligd serial signal thanks to a HDMI-to-SDI converter (SDI s&nd
ited bandwidth of the transistor, which likely correspotaithe for serial data interface). At the transistor output, a B05@-
presence of the 5-GHz resonance that has been observed white-GHz pre-amplifier was used, followed by a limiting am-
measuring the baseband modulation bandwidth (see Fig. 7(cplifier whose output was connected to a SDI-to-HDMI con-
Although error-free transmission could be obtained at higlerter in order to observe the video on a HD TV. Successful
data rates, the BER was significantly degraded at some@rraihd very robust real-time HD uncompressed video communica-
data-rates. We believe that such unexpected behaviour istfén was observed as shown in Fig. 17. Eye-diagram at a data
lated to cavity effects, either between source and detewiitin  rate of 1.5 Gbps, i.e. at the same data rate than that of tie hig
lenses, or within the transistor integration. Another eaesuld  definition uncompressed video signal, is shown in Fig. 18.
be an impedance mismatch at the transistor output. Any sethe
reasons or any combination of them would lead to a degradatio
of the BER. Further work consists in a more careful optical de V. SUMMARY AND PERSPECTIVES
sign in order to reduce such potentially deleterious cafiigcts  For the first time, high-data-rate transmission has been

along with impedance matching circuit design. demonstrated using a plasma-wave transistor as a THz detec-
C. Real-Ti 4 HD Video-T . tor. Error-free transmission has been obtained up to 8.2sGbp
- Real-Time Uncompresse Ideo- fransmission using a frequency-multiplied source and up to 1.8 Gbps us-

Since error-free communication was demonstrated at daig a UTC-PD source, at 310 GHz and 309 GHz, respectively,
rates of few Gbps, real-time uncompressed HD video sigraaid over a distance of 50 cm. The UTC-PD-emitter output
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