• Title/Summary/Keyword: tensile modulus

Search Result 1,191, Processing Time 0.031 seconds

Characteristics of Elastic Paving Material Made of Sawdust and Urethane Resin Mixture (톱밥과 우레탄 수지 혼합물로 제조한 탄성 포장재의 특성)

  • Choi, Jae-Jin;Lee, Kwan-Ho;Moon, Seung-Kwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.673-680
    • /
    • 2017
  • Research and commercialization of wood chips-urethane resin mixtures as paving materials for park trails and tourist attractions are underway. The aim of this study was to expand the use of such paving materials to the playgrounds, where vigorous physical movements occur frequently. For this purpose, the physical properties and safety of the paving material, in which some or all of the wood chips(passing through a 10mm sieve and remaining in a 3mm sieve) were replaced with sawdust, were studied experimentally. Strength, elastic modulus, slip resistance, shock absorption and heavy metal content tests were carried out by varying the mixing ratio of urethane resin, sawdust and wood chip. As a result, in the case of wood chip-resin mixtures with mass ratios of the resin to total mass of sawdust and wood chips of 1.0 and 1.2 and having a ratio of sawdust mass to total mass of sawdust and wood chips of 0-0.4, it was found that the properties satisfied KS F 3888-2. On the other hand, in case of using sawdust only as a woody material, the shock absorbability was below standard, and the mass ratio of resin to sawdust required 1.2 or more to ensure the specified tensile strength.

Paclitaxel Coating on ePTFE Artificial Graft and the Release Behavior (ePTFE 인공혈관에 대한 파클리탁셀의 코팅 및 방출거동)

  • Lim, Soon-Yong;Kim, Cheol-Joo;Kim, Eun-Jin;Kwon, Oh-Kyoung;Kwon, Oh-Hyeong
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.326-331
    • /
    • 2012
  • In this study, expanded poly(tetrafluoro ethylene) (ePTFE) graft was modified to be used as a hemodialysis vascular access. Biodegradable poly(D,L-lactide-$co$-glycolide) (PLGA) was coated onto the inner surface of ePTFE graft with paclitaxel, which is often used as an anti-cancer agent and for reducing neointimal hyperplasia. Surface characterization before and after PLGA coating was carried out by SEM and ATR-FTIR. Porous sturcture of ePTFE was maintained after coating of PLGA solution. The amounts of coated PLGA and paclitaxel determined by ATR-FTIR and HPLC were 1.96 and 0.263 mg/$cm^2$, respectively. Young's modulus was decreased and tensile strength was increased by PLGA coating. Released paclitaxel as a function of incubation time was monitored by HPLC. Approximately 35% of coated paclitaxel was released steadily for 4 weeks with the biodegradation of PLGA. From these results, it is expected that the effect of paclitaxel on reducing neointimal hyperplasia and stenosis is maintained for a long time.

Modification of Silica Nanoparticles with Bis[3-(triethoxysilylpropyl)]tetrasulfide and Their Application for SBR Nanocomposite (Bis[3-(triethoxysilylpropyl)]tetrasulfide에 의한 실리카 입자의 표면개질 반응과 SBR 나노 복합체 응용)

  • Ryu, Hyun Soo;Lee, Young Seok;Lee, Jong Cheol;Ha, KiRyong
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.308-315
    • /
    • 2013
  • In this study, we performed surface modification of silica nanoparticles with bis[3-(triethoxysilylpropyl)]tetrasulfide (TESPT) silane coupling agent to study the effects of treatment temperature, treatment time, and amount of TESPT used on the silanization degree with Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), elemental analysis (EA) and solid state $^{13}C$ and $^{29}Si$ cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance spectroscopy (NMR). We found peak area of isolated silanol groups at $3747cm^{-1}$ decreased, but peak area of $-CH_2$ asymmetric stretching of TESPT at $2938cm^{-1}$ increased with the amount of TESPT from FTIR measurements. We also used universal testing machine (UTM) to study mechanical properties of styrene butadiene rubber (SBR) nanocomposites with 20 phr (parts per hundred of rubber) of pristine and TESPT modified silicas, respectively. The tensile strength and 100% modulus of modified silica/SBR nanocomposite were enhanced from 5.65 to 9.38MPa, from 1.62 to 2.73 MPa, respectively, compared to those of pristine silica/SBR nanocomposite.

Laboratory Performance Evaluation of Chemcrete Modified Asphalt Mixtures (켐크리트 개질 아스팔트 혼합물의 실내 공용성 평가)

  • Park, Kyung-Il;Lee, Hyun-Jong;Lee, Kwang-Ho;Rhee, Suk-Keun
    • International Journal of Highway Engineering
    • /
    • v.3 no.3 s.9
    • /
    • pp.119-133
    • /
    • 2001
  • The stiffness of chemcrete modified asphalt mixtures increase rapidly with time in the presence f oxygen and high temperature, Sometimes the asphalt pavements that have chemcrete modified asphalt mixture applied on the surface none show premature cracking because of the excessive increase in the stiffness f the asphalt mixtures. To mitigate this premature cracking, the chemcrete modified mixtures have been used as a base course material. In this study, the performance of the chemcrete modified asphalt binder and mixtures are investigated through a course of various laboratory tests including dynamic shear rheometer and bending beam rheometer tests for binders and uniaxial tensile fatigue, wheel tracking, and moisture damage tests for the mixtures. And also the resilient modulus of the conventional and chemcrete modified mixtures are compared based on the test results conducted on the specimens obtained from various in-situ test sections. It can be concluded from the tests results that the chemcrete modified mixtures show better rutting resistance than conventional mixtures. The chemcrete modified mixtures may have low temperature cracking when it is applied in the cold region. The stiffness of chemcrete modified mixtures is approximately 50 percent higher than that of conventional mixtures more than two years after the chemcrete modified mixture was applied in the base course.

  • PDF

The Quality of Crushed Sand by Dry Production Process and Its Influence on Properties of Concrete (건식공정으로 생산한 부순 모래의 품질 및 콘크리트 특성에 미치는 영향)

  • Park, Cho-Bum;Baek, Chul-Woo;Kim, Ho-Su;Ryu, Deuk-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.415-423
    • /
    • 2006
  • As the shortage of natural & good quality aggregate for concrete, it is needed development of alternative aggregate. At the present time, the crushed sand is widely used among the alternation aggregate, and the usage of crushed sand will be increased more and more. Generally, crushed sud is produced with wet process in domestic, but some manufacturing companies which are handicapped with local restrict are produced by dry process. In this study, analyzing the facilities of dry crushed sand, the quality properties of dry crushed sand was done by Korean Industrial Standards. Based on the quality results of dry crushed sand, the experiment of concrete with the dry crushed sand which is substitute for sea sand was done. As the results of basic qualities, the amount of 0.08 mm sieve passing ratio was over KS criteria, and the fineness modulus was higher than sea sand, and the other physical properties of dry crushed sand was similar to sea sand. The results of concrete experiment, according to the substitutive ratio of dry crushed sand is increased, the slump and air content of concrete was decreased by increase of fine particles of dry crushed sand, and the unit weight content, compressive & tensile strength of concrete were increased on the contrary. The physical properties of concrete used dry crushed sand were showed same tendency without relation to W/B. Consequently, if the fine particle contents of dry crushed sand was lower, it is judged that dry crushed sand is no problem to use for concrete aggregate and the amount of usage will be increased.

Seismic Performance of Circular RC Columns Retrofitted Using Ductile PET Fibers (고연성 PET 섬유로 보강된 철근콘크리트 원형 기둥의 내진성능)

  • Vachirapanyakun, Sorrasak;Lim, Myung-Kwan;Choi, Dong-Uk
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.289-298
    • /
    • 2016
  • An experimental research was performed using fibers for the purpose of retrofitting existing reinforced concrete circular columns. Glass fiber (GF) and polyethylene terephthalate (PET) were used as well as combined GF+PET (HF). PET has high tensile strength (over 600 MPa) and high ductility (about 15%), but has very low elastic modulus (about 1/6 of GF). A total of four columns was tested against laterally applied reverse cyclic load: control column, GF-, PET-, and HF-strengthened columns. All columns retrofitted using fibers demonstrated improved moment capacity and ductility. Moment capacity of GF-, PET-, and HF-strengthened columns was 120%, 107%, and 120% of the control column, respectively. Drift ratio of all retrofitted columns also increased by 63 ~ 83% over the control column. The final failure mode of the control column was main bar buckling. The final failure mode of the GF- and HF-strengthened columns was GF rupture while that of the PET-strengthened column was main bar rupture in tension. No damage was observed for PET at the ultimate stage due to excellent strain capacity intrinsic to PET. Current test results indicate that PET can be effectively used for seismic retrofit of RC columns. It is noted that the durability characteristics of PET needs to be investigated in the future.

Effect of Reinforcing Fiber Types on Lap Splice Performance of High Performance Fiber Reinforced Cementitious Composite(HPFRCC) (보강 섬유 종류에 따른 고인성 시멘트 복합체내에서 철근의 겹침 이음 성능)

  • Jeon, Esther;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.153-161
    • /
    • 2007
  • This paper investigates the lap splice performance of structural steel bars embedded in high performance fiber reinforced cementitious composite(HPFRCC) with various matrix ductilities. Matrix ductility is governed fiber type and fiber volume fraction. Fiber types were polypropylene(PP), polyethylene(PE) and hybrid fiber[polyethylene fiber+steel cord(PE+SC)]. The lap splice length$(l_d)$ was calculated according to the relevant ACI code requirements for reinforcing bars in normal concrete. As the result of tests, lap splice strength of HPFRCC using PE1.5 and hybrid fiber increased by up to $82{\sim}91$ percent more than that of concrete. Splice strength and energy absorption capacity of PE0.75+SC0.75 or PE1.5(fiber volume fraction 1.5%) specimen increased more than that of PP2.0(fiber volume fraction 2.0%) specimen. Therefore lap splice performance depends on fiber tensile strength and Young's modulus more than fiber volume fraction. Also, HPFRCC appear multiple crack and ductile postpeak behavior due to bridging of fiber in cementitious composite.

Evaluation of Mazars damage model of KURT granite under simulated coupled environment of geological disposal (처분 복합환경을 고려한 KURT 화강암의 Mazars 손상모델 평가)

  • Kim, Jin-Seop;Hong, Chang-Ho;Kim, Geon-Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.4
    • /
    • pp.419-434
    • /
    • 2020
  • In this study, the damage parameters of Mazars model for KURT (KAERI Underground Research Tunnel) granite are measured form uniaxial compressive and Brazilian tests under the simulated coupled condition of a deep geological disposal. The tests are conducted in three different temperatures (15℃, 45℃, and 75℃) and dry/saturated conditions. Major model parameters such as maximum effective tensile strain (𝜖d0), At, Bt, Ac, and Bc differ from the typical reference values of concrete specimens. This is likely due to the difference in elastic modulus between rock and concrete. It is found that the saturation of specimens causes an increase in value of Bt and Bc while, the rise in temperature increases 𝜖d0 and Bt and decreases Bc. The damage model obtained from this study will be used as the primary input parameters in the development of coupled Thermo-Hydro-Mechanical Damage numerical model in KAERI.

Reinforcement of Rubber Properties by Carbon Black and Silica Fillers: A Review

  • Seo, Gon;Kim, Do-Il;Kim, Sun Jung;Ryu, Changseok;Yang, Jae-Kyoung;Kang, Yong-Gu
    • Elastomers and Composites
    • /
    • v.52 no.2
    • /
    • pp.114-130
    • /
    • 2017
  • Enhancing the properties of rubber, such as the tensile strength, modulus, and wear abrasion, by the addition of carbon black and silica as fillers is very important for improving the performance of rubber products. In this review, we summarize the general features of 'the reinforcement of rubber by fillers' and the equations for representing the reinforcement phenomena. The rubber reinforcement was attributed to enhancement of the following: the rubber, bound rubber, formation of networks, and combination between rubber chains and silica followed by entanglement. The reinforcement capability of silica species with different surface and networked states demonstrated the importance of the connection between the silica particles and the rubber chains in achieving high reinforcement. The model involving combination followed by entanglement can provide a plausible explanation of the reinforcement of rubber by carbon black and silica because the combination facilitates the concentration of rubber chains near the filler particles, and entanglement of the rubber chains around the filler particles enforces the resistance against deformation and breakage of rubber compounds, resulting in high reinforcement.

Synthesis and Characterization of GAP or GAP-co-BO Copolymer-based Energetic Thermoplastic Polyurethane (GAP 및 GAP-co-BO Copolymer계 에너지 함유 열가소성 폴리우레탄의 합성 및 특성)

  • Seol, Yang-Ho;Kweon, Jeong-Ohk;Kim, Yong-Jin;Jin, Yong-Hyun;Noh, Si-Tae
    • Applied Chemistry for Engineering
    • /
    • v.30 no.6
    • /
    • pp.673-680
    • /
    • 2019
  • GAP or GAP-co-BO based energetic thermoplastic elastomers (ETPEs) were synthesized by changing the hard segment content percent in the range of 30~45% by 5% difference. Thermal and mechanical properties of GAP-co-BO based ETPEs were compared to those of GAP based ETPEs. FT-IR results showed that the capability of forming hydrogen bond increases with increasing the hard segment content in GAP/GAP-co-BO based ETPE, and also the GAP-co-BO based ETPEs are stronger than GAP based ETPEs in the hydrogen bond formation. DSC and DMA results showed that the glass transition temperature (Tg) of GAP based ETPEs increased with the increment of the hard segment content, while the Tg of GAP-co-BO based ETPEs was maintained even the hard segment content increased. The storage modulus at room temperature of the GAP-co-BO based ETPEs was higher than that of the GAP based ETPEs. This was due to the strong phase separation behavior of the hard and soft segment of GAP-co-BO based ETPEs, which further resulted in the stronger breaking strength and lower tensile elongation at break point for GAP-co-BO based ETPE than the GAP based one.