Browse > Article
http://dx.doi.org/10.14478/ace.2019.1072

Synthesis and Characterization of GAP or GAP-co-BO Copolymer-based Energetic Thermoplastic Polyurethane  

Seol, Yang-Ho (J.Chem Inc.)
Kweon, Jeong-Ohk (J.Chem Inc.)
Kim, Yong-Jin (J.Chem Inc.)
Jin, Yong-Hyun (J.Chem Inc.)
Noh, Si-Tae (Department of Materials Science and Chemical Engineering, Hanyang University)
Publication Information
Applied Chemistry for Engineering / v.30, no.6, 2019 , pp. 673-680 More about this Journal
Abstract
GAP or GAP-co-BO based energetic thermoplastic elastomers (ETPEs) were synthesized by changing the hard segment content percent in the range of 30~45% by 5% difference. Thermal and mechanical properties of GAP-co-BO based ETPEs were compared to those of GAP based ETPEs. FT-IR results showed that the capability of forming hydrogen bond increases with increasing the hard segment content in GAP/GAP-co-BO based ETPE, and also the GAP-co-BO based ETPEs are stronger than GAP based ETPEs in the hydrogen bond formation. DSC and DMA results showed that the glass transition temperature (Tg) of GAP based ETPEs increased with the increment of the hard segment content, while the Tg of GAP-co-BO based ETPEs was maintained even the hard segment content increased. The storage modulus at room temperature of the GAP-co-BO based ETPEs was higher than that of the GAP based ETPEs. This was due to the strong phase separation behavior of the hard and soft segment of GAP-co-BO based ETPEs, which further resulted in the stronger breaking strength and lower tensile elongation at break point for GAP-co-BO based ETPE than the GAP based one.
Keywords
Glycidyl azide polymer; Energetic thermoplastic elastomer; Polyurethane;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Hepburn, Polyurethane Elastomers, 2nd ed., Elsevier Applied Science, London (1992).
2 G. Oertel, Polyurethane Handbook, 2nd ed., Hanser, Munich (1994).
3 S. Fakirov, Handbook of Condensation Thermoplastic Elastomers, Wiley-VCH Verlag Gmbh & Co. KGaA, Weinheim (2005).
4 G. Holden, N. R. Legge, R. Quirk, and H. E. Schroeder, Thermoplastic Elastomers, 2nd ed., Hanser Gargner Publication (1996).
5 C. Hepburn, Polyurethane Elastomers, Elsevier Science, New York (1992).
6 (a) Y. Li, T. Gao, J. Liu, K. Linliu, C. R. Desper, and B. Chu, Multiphase structure of a segmented polyurethane: Effects of temperature and annealing, Macromolecules, 25, 7365-7372 (1992)   DOI
7 (b) S. Abouzahr and G. L. Wilkes, Structure property studies of polyester- and polyether- based MDI- BD segmented polyurethanes: effect of one- vs. two- stage polymerization conditions, J. Appl. Polym. Sci., 29, 2695-2711 (1984)   DOI
8 (c) C. E. Wilkes and C. S. Yusek, Investigation of domain structure in urethane elastomers by X-ray and thermal methods, J. Macromol. Sci. B, 7, 157-175 (1973)   DOI
9 (d) R. Bonart and E. H. Muller, Phase separation in urethane elastomers as judged by low-angle X-ray scattering. I. Fundamentals, J. Macromol. Sci. B, 10, 177-189 (1974)   DOI
10 (e) T. R. Hesketh, J. W. C. Van Bogart, and S. L. Cooper, Differential scanning calorimetry analysis of morphological changes in segmented elastomers, Polym. Eng. Sci., 20, 190-197 (1980)   DOI
11 (f) V. A. Vilensky and Y. S. Lipatov, A criterion for microphase separation in segmented polyurethane and polyurethane ureas, Polymer, 35, 3069-3074 (1994)   DOI
12 (j) J. S. You, J. O. Kweon, S. C. Kang, and S.-T. Noh, A kinetic study of thermal decomposition of glycidyl azide polymer (GAP)-based energetic thermoplastic polyurethanes, Macromol. Res., 18(12), 1226-1232 (2010)   DOI
13 (g) J. T. Koberstein and T. P. Russell, Simultaneous SAXS- DSC study of multiple endothermic behavior in polyether-based polyurethane block copolymers, Macromolecules, 19, 714-720 (1986)   DOI
14 (h) C. S. Paik Sung, C. B. Hu, and C. S. Wu, Properties of segmented poly(urethaneureas) based on 2,4-toluene diisocyanate. 1. Thermal transitions, X-ray studies, and comparison with segmented poly(urethanes), Macromolecules, 13, 111-116 (1980)   DOI
15 (i) R. W. Seymour and S. L. Cooper, DSC studies of polyurethane block polymers, J. Polym. Sci. B, 9, 689-694 (1971)   DOI
16 (k) P. Liu, L. Ye, Y. Liu, and F. Nie, Preparation and properties of the main-chain-fluorinated thermoplastic polyurethane elastomer, Polym. Bull., 66(4), 503-515 (2011).   DOI
17 J. S. You, J. O. Kweon, S. C. Kang, and S. T. Noh, A kinetic study of thermal decomposition of glycidyl azide polymer (GAP)-based energetic thermoplastic polyurethanes, Macromol. Res., 18(12), 1226-1232 (2010).   DOI
18 L. Ning, W. De-Ning, and Y. Sheng-Kang, Crystallinity and hydrogen bonding of hard segments in segmented poly (urethane urea) copolymers, Polymer, 37(16), 3577-3583 (1996).   DOI
19 P. Liu, L. Ye, Y. Liu, and F. Nie, Preparation and properties of the main-chain-fluorinated thermoplastic polyurethane elastomer, Polym. Bull., 66(4), 503-515 (2011).   DOI
20 R. P. Kusy and D. T. Turner, Radiation chemistry of polymers studied by depression of melting temperature, Macromolecules, 4(3), 337-341 (1971).   DOI
21 C. Zhang, Z. Ren, Z. Yin, H. Qian, and D. Ma, Amide II and amide III bands in polyurethane model soft and hard segments, Polym. Bull., 60, 97-101 (2008).   DOI
22 J. Mattia and P. Painter, A comparison of hydrogen bonding and order in a polyurethane and poly(urethane-urea) and their blends with poly (ethylene glycol), Macromolecules, 40(5), 1546-1554 (2007).   DOI
23 Y. I. Tien and K. H. Wei, Hydrogen bonding and mechanical properties in segmented montmorillonite/polyurethane nanocomposites of different hard segment ratios, Polymer, 42(7), 3213-3221 (2001).   DOI
24 J. T. Koberstein, A. F. Galambos, and L. M. Leung, Compression-molded polyurethane block copolymers. 1. Microdomain morphology and thermomechanical properties, Macromolecules, 25, 6195-6204 (1992).   DOI
25 Webster D, The effect of soft segments on the morphology of polyurethane elastomers, In: Frisch KC Klempner D (ed) Advances in Urethane Science and Technology, 110-136 Technomic, Lancaster (1992).
26 G. Holden, H. R. Legge, R. Quirk, and H. E. Schroeder, Thermoplastic Elastomers, Hanser/Gardner Publications, Inc., Cincinnati (1996).
27 S. Fakirov, Handbook of Condensation Thermoplastic Elastomers, Wiley-VCH Verlag Gmbh & Co. KGaA, Weinheim (2005).
28 N. Kubota and T. Sonobe, Combustion mechanism of azide polymer, Propellants, Explosives, Pyrotechnics, 13, 172-177 (1988).   DOI
29 Y. M. Mohan, Y. Mani, and K. M. Raju, Synthesis of azido polymers as potential energetic propellant binders, Des. Monomers, 9, 201-236 (2006).   DOI
30 C. J. Tang, Y. J. Lee, and T. A. Litzinger, Simultaneous temperature and species measurements of the glycidyl azide polymer (GAP) propellant during laser-induced decomposition, Combust. Flame, 117, 244-256 (1999).   DOI
31 M. Judge, C. Badeen, and D. Jones, An advanced GAP/AN/TAGN propellant. Part II: Stability and storage life, Propellants, Explosives, Pyrotechnics, 32, 227-234 (2007).   DOI
32 R. R. Sanghavi, S. N. Asthana, and J. S. Karir, Haridwar singh, studies on thermoplastic elastomers based RDX-Propellant compositions, J. Energy Mater., 19, 79-95 (2001).   DOI
33 M. B. Frankel, L. R. Grant, and J. E. Flanagen, Historical development of glycidyl azide polymer, J. Propulsion Power., 8, 560-563 (1992).   DOI
34 M. D. Shi, Research progress of GAP and GAP propellant, Chinese Journal of Explosives and Propellants, 1, 9-16 (1994).
35 J. F. Guery, I. S. Chang, T. Shimada, M. Glick, D. Boury, E. Robert, J. Napior, R. Wardle, C. Perut, M. Calabro, R. Glick, H. Habu, N. Sekino, G. Vigier, and B. d'Andrea, Solid propulsion for space applications: An updated roadmap, Acta Astronaut., 66, 201-219 (2010).   DOI
36 E. Ahad, Azido thermoplastic elastomers, US Patent 5,223,056 (1993).
37 J. Xiao, H. X. Xiao, K. C. Frisch, and N. Malwitz, Polyurethane-urea anionomer dispersions. I, J. Appl. Polym. Sci., 54, 1643-1650 (1994).   DOI
38 E. Diaz, G. Ampleman, and R. E. Prud'homme, Polymer nanocomposites from energetic thermoplastic elastomers and Alex$^{(R)}$. Propellants, Explosives, Pyrotechnics, 28(4), 210-215 (2013)   DOI
39 G. Ampleman, P. Brousseau, S. Thiboustot, C. Dubois, and E. Diaz, Insensitive melt- cast plastic- bonded explosives containing energetic polyurethane thermoplastic elastomer binders, US 2002/0003016 A1 (2002).
40 G. Ampleman, A. Marois, and S. Desilets, Azido thermoplastic elastomers for propellants, US Patent 6,479,614 (2002).