Browse > Article
http://dx.doi.org/10.7473/EC.2017.52.2.114

Reinforcement of Rubber Properties by Carbon Black and Silica Fillers: A Review  

Seo, Gon (MiraeSI)
Kim, Do-Il (MiraeSI)
Kim, Sun Jung (MiraeSI)
Ryu, Changseok (MiraeSI)
Yang, Jae-Kyoung (MiraeSI)
Kang, Yong-Gu (Research & Development, NEXEN TIRE Co.)
Publication Information
Elastomers and Composites / v.52, no.2, 2017 , pp. 114-130 More about this Journal
Abstract
Enhancing the properties of rubber, such as the tensile strength, modulus, and wear abrasion, by the addition of carbon black and silica as fillers is very important for improving the performance of rubber products. In this review, we summarize the general features of 'the reinforcement of rubber by fillers' and the equations for representing the reinforcement phenomena. The rubber reinforcement was attributed to enhancement of the following: the rubber, bound rubber, formation of networks, and combination between rubber chains and silica followed by entanglement. The reinforcement capability of silica species with different surface and networked states demonstrated the importance of the connection between the silica particles and the rubber chains in achieving high reinforcement. The model involving combination followed by entanglement can provide a plausible explanation of the reinforcement of rubber by carbon black and silica because the combination facilitates the concentration of rubber chains near the filler particles, and entanglement of the rubber chains around the filler particles enforces the resistance against deformation and breakage of rubber compounds, resulting in high reinforcement.
Keywords
reinforcement; rubber; carbon black; silica; nanocomposites;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. L. Leblanc, "Rubber-filler interactions and rheological properties in filled compounds", Prog. Polym. Sci., 27, 627 (2002).   DOI
2 Y. Fukahori, "Generalized concept of the reinforcement of elastomers. Part 3: Self-reinforcement by the formation of continuous hard phase in segmented polyurethane elastomer", Rubber Chem. Technol., 80, 777 (2007).   DOI
3 Y. Fukahori, "Generalized concept of the reinforcement of elastomers. Part 1: Carbon black reinforcement of rubbers", Rubber Chem. Technol., 80, 701 (2007).   DOI
4 A. I. Medalia, "Effect of carbon black on dynamic properties of rubber vulcanizates", Rubber Chem. Technol., 51, 437 (1978).   DOI
5 D. C. Edwards, "Review: Polymer filler interactions in rubber reinforcement", J. Mater. Sci., 25, 4175 (1990).   DOI
6 S. Wolff, "Chemical aspects of rubber reinforcement by fillers", Rubber Chem. Technol., 69, 325 (1996).   DOI
7 M.-J. Wang, "Effect of polymer-filler and filler-filler interactions on dynamic properties of filled vulcanizates", Rubber-Chem. Technol., 71, 520 (1998).   DOI
8 G. R. Hamed, "Reinforcement of rubber", Rubber Chem. Technol., 73, 524 (2000).   DOI
9 G. R. Hamed, "Rubber reinforcement and its classification", Rubber Chem. Technol., 80, 533 (2007).   DOI
10 D. W. Lee and B. R. Yoo, "Advanced sillica/polymer composites: Materials and applications", J. Ind. Eng. Chem., 38, 1 (2016).   DOI
11 K. Sahakaro, "Mechanism of reinforcement using nanofillers in rubber nanocomposites", in Progress in Rubber Nanocomposites, S. Thomas and H. J. Maria Ed., Woodhead Publishing, Duxford, 2017, Chap 3.
12 Y. Song and Q. Zheng, "Concepts and conflicts in nanoparticles reinforcement to polymers beyond hydrodynamics", Prog. Mater. Sci., 84, 1 (2016).   DOI
13 C. G. Robertson, R. Bogoslovov, and C. M. Roland, "Structure arrest and thermodynamic scaling in filler-reinforced polymers", Rubber Chem. Technol., 82, 202 (2009).   DOI
14 B. B. Boonstra, "Reinforcement by fillers", in Rubber Technology and Manufacture, 2nd ed., C. M. Blow and C. Hepburn Ed., Butterworth Scientific, London, 1982, Chap. 7.
15 R. Alex, "Nanofillers in rubber-rubber blends", in Rubber Nanocomposites, Preparation, Properties and Application, S. Thomas and R. Stephen Ed., John Wiley & Sons, Singapore, 2010, Chap. 9.
16 N. Hewit, "Compounding Precipitated Silica in Elastomers, Theory and Practice", Plastics Design Library, 2007, Chap. 1.
17 A. Kumar, S. Modi, A. Panwar, D. Schmidt, C. M. F. Barry, and J. L. Mead, "Highly impermeable nanocomposites of brominated butyl rubber with modified montmorillonite clay", Rubber Chem. Technol., 87, 579 (2014).   DOI
18 G. Heinrich and M. Kluppel, "Recent advances in the theory of filler networking in elastomers", Adv. Polym. Sci., 160, 1 (2002).
19 K. Kanny and T. P. Mohan, "Rubber nanocomposites with nanoclay as the filler", in Progress in Rubber Nanocomposites, S. Thomas and H. J. Maria Ed., Woodhead Publishing, Duxford, 2017, Chap 5.
20 Y. Nakaramontri, C. Nakason, C. Kummerlowe, and N. Vennemann, "Influence of modified natural rubber on properties of natural rubber-carbon nanotube composites", Rubber Chem. Technol., 88, 199 (2015).   DOI
21 J. Kalfus and J. Jancar, "Theoretical modeling and simulation of rubber nanocomposites", in Rubber Nanocomposites, Preparation, Properties, and Applications, S. Thomas and R. Stephen Ed., John Wiley & Sons, Singapore, 2010, Chap. 5.
22 Y. Fukahori, A. A. Hon, V. Jha, and J. J. C. Busfield, "Modified Guth-Gold equation for carbon black-filled rubbers", Rubber Chem. Technol., 86, 218 (2013).   DOI
23 G. Huber and T. A. Vilgis, "On the mechanism of hydrodynamic reinforcement in elastic composites", Macromolecules, 35, 9204 (2002).   DOI
24 J. H. J. van Opeusden, J. M. M. de Nus, and F. W. Wiegel, "The behavior of an ideal polymer chain interacting with two parallel surface", Physica, 134A, 59 (1985).
25 X. Li, Z. Li, and Y. Xia, "Test and calculation of the carbon black reinforcement effect on the hyper-elastic properties of tire rubbers", Rubber Chem. Technol., 88, 98 (2015).   DOI
26 J. Liu and L. Zhang, "Computational simulation in elastomer nanocomposites", in Progress in Rubber Nanocomposites, S. Thomas and H. J. Maria Ed., Woodhead Publishing, Duxford, 2017, Chap 15.
27 V. M. Litvinov and P. A. M. Steeman, "EPDM-carbon black interactions and the reinforcement mechanisms, As studied by low-resolution $^1H$ NMR", Macromlecules, 32, 8476 (1999).   DOI
28 V. M. Litvinov, H. Barthel, and J. Weis, "Structure of a PDMS layer grafted onto a silica surface studied by means of DSC and solid-state NMR", Macromlecules, 35, 4356 (2002).   DOI
29 H. H. Hassan, E. Ateia, N. A. Darwish, S. F. Halim, and A. K. Abd El-Aziz, "Effect of filler concentration on the physicomechanical properties of super abrasion furnace black and silica loaded styrene butadiene rubber", Mater. Design, 34, 533 (2012).   DOI
30 F. Yatsuyanagi, H. Kaidou, and M. Ito, "Relationship between viscoelastic properties and characteristics of filler-gel in filled rubber system", Rubber Chem. Technol., 72, 657 (1999).   DOI
31 A. Bouty, L. Petitjean, C. Degrandcourt, J. Gummel, P. Kwaśniewski, F. Meneau, F. Boué, M. Couty, and J. Jestin, "Nanofiller structure and reinforcement in model silica/rubber composites: A quantitative correlation driven by interfacial agents", Macromolecules, 47, 5365 (2014).   DOI
32 W. Feng, Z. Tang, P. Weng, and B. Guo, "Correlation of filler networking with reinforcement and dynamic properties of SSBR/carbon black/silica composites", Rubber Chem. Technol., 88, 676 (2015).   DOI
33 S. S. Sternstein, S. Amanuel, and M. L. Shofner, "Reinforcement mechanisms in nanofilled polymer melts and elastomers", Rubber Chem. Technol., 83, 181 (2010).   DOI
34 C. G. Robertson, C. J. Lin, R. B. Bogoslovov, M. Rackaitis, P. Sadhukhan, J. D. Quinn, and C. M. Roland, "Flocculation, reinforcement, and glass transition effects in silica-filled styrene-butadiene rubber", Rubber Chem. Technol., 84, 507 (2011).   DOI
35 S. S. Sarkawi, W. K. Dierkes, and J. W. M. Noordermeer, "Elucidation of filler-to-filler and filler-to-rubber interactions in silica-reinforced natural rubber by TEM network", Eur. Polym. J., 54, 118 (2014).   DOI
36 D. Fragiadakis, L. Bokobza, and P. Pissis, "Dynamics near the filler surface in natural rubber-silica nanocomposites", Polymer, 52, 3175 (2011).   DOI
37 S.-S. Choi, K.-H. Chung, and C. Nah, "Improvement of properties of silica-filled styrene-butadiene rubber (SBR) compounds using acrylonitrile-styrene-butadiene (NSBR)", Polym. Adv. Technol., 14, 557 (2003).   DOI
38 S. S. Sternstein and A.-J. Zhu, "Reinforcement mechanism of nanofilled polymer melts as elucidated by nonlinear viscoelastic behavior", Macromolecules, 35, 7262 (2002).   DOI
39 H. Samet Varol, M. Alejandra, Sánchez, H. Lu, J. E. Baio, C. Malm, N. Encinas, M. R. B. Mermet-Guyennet, N. Martzel, D. Bonn, M. Bonn, T. Weidner, E. H. G. Backus, and S. H. Parekh, "Multiscale effects of interfacial polymer confinement in silica nanocomposites", Macromolecules, 48, 7929 (2015).   DOI
40 W. Kaewsakul, K. Sahakaro, W. K. Dierkes, and J. W. M. Noordermeer, "Cooperative effects of epoxide functional groups on natural rubber and silane coupling agents on reinforcing efficiency of silica", Rubber Chem. Technol., 87, 291 (2014).   DOI
41 G. Seo, S. Kaang, C. K. Hong, D. S. Jung, C. S. Ryu, and D. H. Lee, "Preparation of novel fillers, named networked silicas, and their effects of reinforcement on rubber compounds", Polym. Int., 57, 1101 (2008).   DOI
42 D. S. Jeong, C. K. Hong, G. T. Lim, G. Seo, and C. S. Ryu. "Networked silica with exceptional reinforcing performance for SBR compounds: Interconnected by methylene diphenyl diisocyanate", J. Elast. Plastics, 41, 353 (2009).   DOI
43 A. Ansarifar, L. Wang, R. J. Ellis, and S. P. Kirtley, "The reinforcement and crosslinking of styrene butadiene rubber with silanized precipitated silica nanofiller", Rubber Chem. Technol., 79, 39 (2006).   DOI
44 G. Seo, S. M. Park, K. Ha, K. T. Choi, C. K. Hong, and S. Kaang, "Effectively reinforcing roles of the networked silica prepared using 3,3'-bis(triethoxysilylpropyl)tetrasulfide in the physical properties of SBR compounds", J. Mater. Sci., 45, 1897 (2010).
45 G. Fontaras and Z. Samaras, "On the way to 130 g $CO_2$/km-Estimating the future characteristics of the average European passenger car", Energy policy, 38, 1826 (2011).
46 G. Fontaras and P. Dilara, "The evolution of European passenger car characteristics 2000-2010 and its effects on real-world $CO_2$ emissions and $CO_2$ reduction policy", Energy Policy, 49, 719 (2012).   DOI
47 T. Fukuda, S. Fujii, Y. Nakamura, and M. Sasaki, "Mechanical properties of silica particle-filled styrene-butadiene rubber composites containing polysulfide-type silane coupling agents: Influence of loading method of silane", J. Appl. Polym. Sci., 130, 322 (2013).   DOI
48 W. Kaewsakul, K. Sahakaro, W. K. Dierkes, and J. W. M. Noordermeer, "Optimization of rubber formulation for silicareinforced natural rubber compounds", Rubber Chem. Technol., 86, 313 (2013).   DOI
49 G. Heinrich and T. A. Vilgis, "Why silica technology needs SSBR in high performance tires?", KGK, 61, 368 (2008).
50 S. Mihara, R. N. Datta, W. K. Dierkes, J. W. M. Noordermeer, N. Amino, Y. Ishikawa, S. Nishitsuji, and M. Takenaka, "Ultra small-angle X-ray scattering study of flocculation in silica-filled rubber", Rubber Chem. Technol., 87, 348 (2014).   DOI
51 K.-J. Kim and J. L. White, "Silica surface modification using different aliphatic chain length silane coupling agents and their effects on silica agglomerate size and processability", Comp. Interfaces, 9, 541 (2002).   DOI
52 K.-J. Kim and J. VanderKooi, "TESPT and treated silica compounds on TESPD rheological property and silica break down in natural rubber", KGK, 55, 518 (2002).
53 C. S. Ryu, J.-K. Yang, W. Park, Y. J. Seo, S. J. Kim, D. I. Kim, S. H. Park, and G. Seo, "Reinforcement of styrene-butadiene/polybutadiene rubber compounds by modified silicas with different surface and networked states", J. Appl. Polym. Sci., 134, DOI: 10.1002/APP.44893 (2017).   DOI
54 E. M. Cichomski, "Silica-silane reinforced passenger car tire treads", Ph. D. Thesis, University of Twente, 2015.
55 F. Bueche, "Mullins effect and rubber-filler interaction", J. Appl. Polym. Sci., 5, 271 (1961).   DOI