DOI QR코드

DOI QR Code

Synthesis and Characterization of GAP or GAP-co-BO Copolymer-based Energetic Thermoplastic Polyurethane

GAP 및 GAP-co-BO Copolymer계 에너지 함유 열가소성 폴리우레탄의 합성 및 특성

  • Received : 2019.09.10
  • Accepted : 2019.10.09
  • Published : 2019.12.10

Abstract

GAP or GAP-co-BO based energetic thermoplastic elastomers (ETPEs) were synthesized by changing the hard segment content percent in the range of 30~45% by 5% difference. Thermal and mechanical properties of GAP-co-BO based ETPEs were compared to those of GAP based ETPEs. FT-IR results showed that the capability of forming hydrogen bond increases with increasing the hard segment content in GAP/GAP-co-BO based ETPE, and also the GAP-co-BO based ETPEs are stronger than GAP based ETPEs in the hydrogen bond formation. DSC and DMA results showed that the glass transition temperature (Tg) of GAP based ETPEs increased with the increment of the hard segment content, while the Tg of GAP-co-BO based ETPEs was maintained even the hard segment content increased. The storage modulus at room temperature of the GAP-co-BO based ETPEs was higher than that of the GAP based ETPEs. This was due to the strong phase separation behavior of the hard and soft segment of GAP-co-BO based ETPEs, which further resulted in the stronger breaking strength and lower tensile elongation at break point for GAP-co-BO based ETPE than the GAP based one.

GAP 및 GAP-co-BO계 에너지 함유 열가소성 탄성체(ETPE)의 하드세그먼트 함량을 30~45% 범위에서 변화시켜 합성하여 열적 특성 및 기계적 특성을 비교 연구하여 고찰하였다. FTIR 분석 결과로부터 GAP-co-BO계 ETPE와 GAP계 ETPE는 하드세그먼트 함량이 증가함에 따라 수소결합을 형성하는 능력이 증가하였으며 GAP-co-BO계 ETPE의 수소 결합 능력이 GAP계 ETPE보다 크게 나타났다. DSC와 DMA 분석 결과로부터 GAP계 ETPE의 유리전이온도(Tg)는 하드세그먼트 함량이 증가함에 따라 증가하였으나, GAP-co-BO계 ETPE의 유리전이온도(Tg)는 하드세그먼트가 증가하여도 유사한 값을 유지하였다. 상온 storage modulus는 GAP-co-BO계 ETPE의 값이 GAP계 ETPE 값보다 더 크게 나타났다. 이러한 거동은 GAP-co-BO계 ETPE 내의 하드세그먼트와 소프트세그먼트의 강한 상분리 거동의 결과로 볼 수 있다. 그 결과 GAP-co-BO계 ETPE는 GAP계 ETPE보다 더 큰 파단강도와 더 낮은 파단신율 값을 나타냈다.

Keywords

References

  1. Y. M. Mohan, Y. Mani, and K. M. Raju, Synthesis of azido polymers as potential energetic propellant binders, Des. Monomers, 9, 201-236 (2006). https://doi.org/10.1163/156855506777351045
  2. C. J. Tang, Y. J. Lee, and T. A. Litzinger, Simultaneous temperature and species measurements of the glycidyl azide polymer (GAP) propellant during laser-induced decomposition, Combust. Flame, 117, 244-256 (1999). https://doi.org/10.1016/S0010-2180(98)00112-6
  3. N. Kubota and T. Sonobe, Combustion mechanism of azide polymer, Propellants, Explosives, Pyrotechnics, 13, 172-177 (1988). https://doi.org/10.1002/prep.19880130604
  4. M. Judge, C. Badeen, and D. Jones, An advanced GAP/AN/TAGN propellant. Part II: Stability and storage life, Propellants, Explosives, Pyrotechnics, 32, 227-234 (2007). https://doi.org/10.1002/prep.200700024
  5. M. B. Frankel, L. R. Grant, and J. E. Flanagen, Historical development of glycidyl azide polymer, J. Propulsion Power., 8, 560-563 (1992). https://doi.org/10.2514/3.23514
  6. M. D. Shi, Research progress of GAP and GAP propellant, Chinese Journal of Explosives and Propellants, 1, 9-16 (1994).
  7. J. F. Guery, I. S. Chang, T. Shimada, M. Glick, D. Boury, E. Robert, J. Napior, R. Wardle, C. Perut, M. Calabro, R. Glick, H. Habu, N. Sekino, G. Vigier, and B. d'Andrea, Solid propulsion for space applications: An updated roadmap, Acta Astronaut., 66, 201-219 (2010). https://doi.org/10.1016/j.actaastro.2009.05.028
  8. R. R. Sanghavi, S. N. Asthana, and J. S. Karir, Haridwar singh, studies on thermoplastic elastomers based RDX-Propellant compositions, J. Energy Mater., 19, 79-95 (2001). https://doi.org/10.1080/07370650108219393
  9. E. Diaz, G. Ampleman, and R. E. Prud'homme, Polymer nanocomposites from energetic thermoplastic elastomers and Alex$^{(R)}$. Propellants, Explosives, Pyrotechnics, 28(4), 210-215 (2013) https://doi.org/10.1002/prep.200300007
  10. G. Ampleman, P. Brousseau, S. Thiboustot, C. Dubois, and E. Diaz, Insensitive melt- cast plastic- bonded explosives containing energetic polyurethane thermoplastic elastomer binders, US 2002/0003016 A1 (2002).
  11. G. Ampleman, A. Marois, and S. Desilets, Azido thermoplastic elastomers for propellants, US Patent 6,479,614 (2002).
  12. E. Ahad, Azido thermoplastic elastomers, US Patent 5,223,056 (1993).
  13. C. Hepburn, Polyurethane Elastomers, 2nd ed., Elsevier Applied Science, London (1992).
  14. G. Oertel, Polyurethane Handbook, 2nd ed., Hanser, Munich (1994).
  15. S. Fakirov, Handbook of Condensation Thermoplastic Elastomers, Wiley-VCH Verlag Gmbh & Co. KGaA, Weinheim (2005).
  16. G. Holden, N. R. Legge, R. Quirk, and H. E. Schroeder, Thermoplastic Elastomers, 2nd ed., Hanser Gargner Publication (1996).
  17. C. Hepburn, Polyurethane Elastomers, Elsevier Science, New York (1992).
  18. (a) Y. Li, T. Gao, J. Liu, K. Linliu, C. R. Desper, and B. Chu, Multiphase structure of a segmented polyurethane: Effects of temperature and annealing, Macromolecules, 25, 7365-7372 (1992) https://doi.org/10.1021/ma00052a045
  19. (b) S. Abouzahr and G. L. Wilkes, Structure property studies of polyester- and polyether- based MDI- BD segmented polyurethanes: effect of one- vs. two- stage polymerization conditions, J. Appl. Polym. Sci., 29, 2695-2711 (1984) https://doi.org/10.1002/app.1984.070290902
  20. (c) C. E. Wilkes and C. S. Yusek, Investigation of domain structure in urethane elastomers by X-ray and thermal methods, J. Macromol. Sci. B, 7, 157-175 (1973) https://doi.org/10.1080/00222347308212578
  21. (d) R. Bonart and E. H. Muller, Phase separation in urethane elastomers as judged by low-angle X-ray scattering. I. Fundamentals, J. Macromol. Sci. B, 10, 177-189 (1974) https://doi.org/10.1080/00222347408219403
  22. (e) T. R. Hesketh, J. W. C. Van Bogart, and S. L. Cooper, Differential scanning calorimetry analysis of morphological changes in segmented elastomers, Polym. Eng. Sci., 20, 190-197 (1980) https://doi.org/10.1002/pen.760200304
  23. (f) V. A. Vilensky and Y. S. Lipatov, A criterion for microphase separation in segmented polyurethane and polyurethane ureas, Polymer, 35, 3069-3074 (1994) https://doi.org/10.1016/0032-3861(94)90421-9
  24. (g) J. T. Koberstein and T. P. Russell, Simultaneous SAXS- DSC study of multiple endothermic behavior in polyether-based polyurethane block copolymers, Macromolecules, 19, 714-720 (1986) https://doi.org/10.1021/ma00157a039
  25. (h) C. S. Paik Sung, C. B. Hu, and C. S. Wu, Properties of segmented poly(urethaneureas) based on 2,4-toluene diisocyanate. 1. Thermal transitions, X-ray studies, and comparison with segmented poly(urethanes), Macromolecules, 13, 111-116 (1980) https://doi.org/10.1021/ma60073a022
  26. (i) R. W. Seymour and S. L. Cooper, DSC studies of polyurethane block polymers, J. Polym. Sci. B, 9, 689-694 (1971) https://doi.org/10.1002/pol.1971.110090911
  27. (j) J. S. You, J. O. Kweon, S. C. Kang, and S.-T. Noh, A kinetic study of thermal decomposition of glycidyl azide polymer (GAP)-based energetic thermoplastic polyurethanes, Macromol. Res., 18(12), 1226-1232 (2010) https://doi.org/10.1007/s13233-010-1215-4
  28. (k) P. Liu, L. Ye, Y. Liu, and F. Nie, Preparation and properties of the main-chain-fluorinated thermoplastic polyurethane elastomer, Polym. Bull., 66(4), 503-515 (2011). https://doi.org/10.1007/s00289-010-0352-4
  29. J. S. You, J. O. Kweon, S. C. Kang, and S. T. Noh, A kinetic study of thermal decomposition of glycidyl azide polymer (GAP)-based energetic thermoplastic polyurethanes, Macromol. Res., 18(12), 1226-1232 (2010). https://doi.org/10.1007/s13233-010-1215-4
  30. P. Liu, L. Ye, Y. Liu, and F. Nie, Preparation and properties of the main-chain-fluorinated thermoplastic polyurethane elastomer, Polym. Bull., 66(4), 503-515 (2011). https://doi.org/10.1007/s00289-010-0352-4
  31. R. P. Kusy and D. T. Turner, Radiation chemistry of polymers studied by depression of melting temperature, Macromolecules, 4(3), 337-341 (1971). https://doi.org/10.1021/ma60021a017
  32. L. Ning, W. De-Ning, and Y. Sheng-Kang, Crystallinity and hydrogen bonding of hard segments in segmented poly (urethane urea) copolymers, Polymer, 37(16), 3577-3583 (1996). https://doi.org/10.1016/0032-3861(96)00166-8
  33. C. Zhang, Z. Ren, Z. Yin, H. Qian, and D. Ma, Amide II and amide III bands in polyurethane model soft and hard segments, Polym. Bull., 60, 97-101 (2008). https://doi.org/10.1007/s00289-007-0837-y
  34. J. Mattia and P. Painter, A comparison of hydrogen bonding and order in a polyurethane and poly(urethane-urea) and their blends with poly (ethylene glycol), Macromolecules, 40(5), 1546-1554 (2007). https://doi.org/10.1021/ma0626362
  35. Y. I. Tien and K. H. Wei, Hydrogen bonding and mechanical properties in segmented montmorillonite/polyurethane nanocomposites of different hard segment ratios, Polymer, 42(7), 3213-3221 (2001). https://doi.org/10.1016/S0032-3861(00)00729-1
  36. J. T. Koberstein, A. F. Galambos, and L. M. Leung, Compression-molded polyurethane block copolymers. 1. Microdomain morphology and thermomechanical properties, Macromolecules, 25, 6195-6204 (1992). https://doi.org/10.1021/ma00049a017
  37. Webster D, The effect of soft segments on the morphology of polyurethane elastomers, In: Frisch KC Klempner D (ed) Advances in Urethane Science and Technology, 110-136 Technomic, Lancaster (1992).
  38. G. Holden, H. R. Legge, R. Quirk, and H. E. Schroeder, Thermoplastic Elastomers, Hanser/Gardner Publications, Inc., Cincinnati (1996).
  39. S. Fakirov, Handbook of Condensation Thermoplastic Elastomers, Wiley-VCH Verlag Gmbh & Co. KGaA, Weinheim (2005).
  40. J. Xiao, H. X. Xiao, K. C. Frisch, and N. Malwitz, Polyurethane-urea anionomer dispersions. I, J. Appl. Polym. Sci., 54, 1643-1650 (1994). https://doi.org/10.1002/app.1994.070541107