• Title/Summary/Keyword: temperature drop

Search Result 1,122, Processing Time 0.029 seconds

A Study on the Temperature Behavior on Impinging Plate of Diesel Spray with Ultra High Pressure (극초고압 디젤분무의 충돌면 온도거동에 관한 연구)

  • Lee Jong Tai;Jeong Dae Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.3 s.234
    • /
    • pp.402-408
    • /
    • 2005
  • The instantaneous temperature behaviors on impinging plate in case of ultra high pressure have been measured and analyzed by using the instantaneous temperature probe and ultra high pressure injection equipment. The temperature drop was largest at P1 which is center of impinging spray and decreased with propagation of spray to the radius direction. The temperature drop was bigger in case of higher temperature of impinging plate. The temperature drop decreased with increase of injection pressure. But decreasing rate of temperature drop was slight over 2,500 bars. Therefore, it was predicted that the fuel evaporation versus the increase of injection pressure was maximum at around 2,500 bars.

Development of On-line Temperature Prediction Model for Plate Rolling (후판 압연의 온라인 온도예측 모델 개발)

  • 서인식;이창선;조세돈;주웅용
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.283-292
    • /
    • 1999
  • Temperature prediction model was developed for on-line application to plate rolling mills of POSCO. The adequate boundary conditions of heat transfer coefficients were obtained by comparing the predicted temperature with the measured temperatures taken by measuring system in plate rolling mill of POSCO. In obtaining the boundary condition which minimize the mean and standard deviation of the difference between prediction and measurement, orthogonal array for experimental design was used to reduce the calculation time of large data set. To predict the temperature drop at four edge of plate in one dimensional model, the energy change by heat transfer though directions perpendicular to thickness direction was treated like that by deformation. And the heat transfer through four edge directions was inferred from that through thickness direction with two coefficients of depth and severity of temperature drop at the edge. The boundary condition for the depth and severity of temperature drop were also determined using the measured temperature.

  • PDF

An Experimental Study on Bubble Growth and Temperature Change on Microheater (마이크로 히터에서의 기포성장과 온도변화에 관한 실험적 연구)

  • Ko, Seung-Hyun;Kim, Ho-Young;Kim, Shin-Kyu;Chang, Young-Soo;Lee, Yoon-Pyo;Kim, Young-Chan
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1010-1015
    • /
    • 2003
  • Bubble growth on microheater has been experimentally investigated in this study. The experiment was performed using platinum microheaters having dimensions of 300 ${\mu}m$ or 50 ${\mu}m$ in length, 20 ${\mu}m$ or 5 ${\mu}m$ in width, and $0.2{\pm}0.01$ ${\mu}m$ in thickness. A high speed video camera was used to observe bubble growth at 2,000 frames per second. Microheater temperature was measured at the rate of 300 Hz. with a data acquisition system. Bubble nucleation frequency increased with working fluid temperature. Although the slope of temperature drop was similar in all cases, the magnitude of temperature drop was different. The temperature profiles and the high speed camera images were combined to explain temperature drop.

  • PDF

A Study on Filtration Performance Test with Electrostatically Enhanced Fabric Filter (정전형여과집진방식에서 여과특성에 관한 연구)

  • 천중국;박출재;최금찬
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.11 no.4
    • /
    • pp.361-367
    • /
    • 1995
  • This study has been carried out to investigate the filteration performance of Electrostatically Stimulated Fabric Filter(ESFF) at high temperature condition. The electric field was maintained parallel to the fabric surface. The benefits of ESFF are lower residual pressure drop, improvement of fine particle removal efficiency and increasing reduced rate of pressure drop during a filteration cycle, stable operation at higher filtering velocities. According to the variance of filtering velocities and dust loadings, the results are summarized as follows; By imposing an electric field on the filter, the reduced rate of pressure drop was 7.sim.18% at room temperature, and when filtering velocity was 1.8m/min and dust loading was 1g/m$^{3}$, the value of reduced rate of pressure drop was shown the highest. Under the electric field around the filter, the reduced rate of pressure drop was 10.sim.35% at high temperature, and when filtering velocity was 1.8m/min and dust loading was 1g/m$^{3}$, the value of reduced rate of pressure drop was shown the highest. Most of all, at high temperature, the value of reduced rate of pressure drop was resulted to 25%. Also the collecting efficiency was shown clearly improved. By the SEM photo analysis, the number of penetrated particles at the Conventional Fabric Filter was approximately two times that of Electrostatically Stimulated Fabric Filter.

  • PDF

A Study on Analysis of Breakup Mechanism of Vaporizing Fuel Droplet in High Temperature and Velocity Air Stream (고온고속류에서 기화를 고려한 연료액적의 분열(Breakup)기구 해석에 관한 연구)

  • Kim, K.C.;Hwang, S.S.
    • Journal of ILASS-Korea
    • /
    • v.3 no.3
    • /
    • pp.1-13
    • /
    • 1998
  • In this study, an experimental study was performed to investigate the breakup mechanism of vaporizing droplet. A well-controlled experimental apparatus was used to study breakup mechanisms of a monodisperse stream of drops injected into a transverse high temperature and velocity air stream. The experiments gave information$ about the microscopic structure of the liquid drop breakup process, drop breakup regimes, and drop trajectories in high temperature flow region. The breakup time, drop acceleration and wavelength of surface instability wave were measured from a high-magnification and double spark photography. The two instability theories, i.e., Kelvin-Helmholtz instability and Rayleigh-Taylor instability, were estimated by comparing the calculated data with the measurements. The results showed that the breakup time in high temperature flow condition is shortened because the surface tension is decreased by the increase of gas temperature.

  • PDF

Evaporation Pressure Drop of Carbon Dioxide in a Horizontal Tube (수평관내 이산화탄소의 증발 압력강하)

  • Ku, H.K.;Son, C.H.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.63-69
    • /
    • 2007
  • The evaporation pressure drop of $CO_2$ (R-744) in a horizontal tube was investigated experimentally. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and an evaporator (test section). The test section consists of a smooth, horizontal stainless steel tube of 4.57 mm inner diameter. The experiments were conducted at saturation temperature of $-5^{\circ}C\;to\;5^{\circ}C$, and heat flux of 10 to $40kW/m^2$. The test results showed that the evaporation pressure drop of $CO_2$ are highly dependent on the vapor quality, heat flux and saturation temperature. The measured pressure drop during the evaporation process of $CO_2$ increases with increased mass flux, and decreased saturation temperature. The evaporation pressure drop of $CO_2$ is much lower than that of R 22. In comparison with test results and existing correlations, the best fit of the present experimental data is obtained with the previous correlation. But existing correlations failed to predict the evaporation pressure drop of $CO_2$. Therefore, it is necessary to develop reliable and accurate predictions determining the evaporation pressure drop of $CO_2$ in a horizontal tube.

  • PDF

Greenhouse Cooling by Fog System (FOG SYSTEM 을 이용한 여름철 온실냉방)

  • 서원명
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.1
    • /
    • pp.60-71
    • /
    • 1999
  • This study was performed to improve underirable warm greenhouse environment by fog cooling system in summer season. The resultsof droplet size analysis and cooling effects for fog cooling system are summarized as follows ; 1. At the pump pressure of 70kgf/$\textrm{cm}^2$ , the mean (SMD) drop size was 22.6${\mu}{\textrm}{m}$ and the maximum and minimum drop size was 45.68${\mu}{\textrm}{m}$ and 1.73${\mu}{\textrm}{m}$ , respectively, and almost all of the drop size was less than 40${\mu}{\textrm}{m}$. 2. The temperature of fog cooling greenhouse with 60% shading was dropped more than 2$^{\circ}C$ below the ambient temperature , while the greenhouse temperature without shading was 1$^{\circ}C$ higher than the ambient temperature. 3. It was found that fog spraying intervals were significantly influential on cooling effect. 4. When the greenhouse was ventilated sufficiently by natural vent system, green house temperature could be maintained by 2.5$^{\circ}C$ lower than the ambient temperature, while it was difficult to drop the greenhouse temperature below ambient temeperature without sufficient ventilation. 5. It was found that the temperature of experimental greenhouse could be maintained 3$^{\circ}C$ to 14$^{\circ}C$ lower that of control greenhouse though there were variations depending on experimental and weather conditions.

  • PDF

Effects of Thermal Contact Resistance on Film Growth Rate in a Horizontal MOCVD Reactor

  • Im Ik-Tae;Choi Nag Jung;Sugiyama Masakazu;Nakano Yoshiyaki;Shimogaki Yukihiro;Kim Byoung Ho;Kim Kwang-Sun
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1338-1346
    • /
    • 2005
  • Effects of thermal contact resistance between heater and susceptor, susceptor and graphite board in a MOCVD reactor on temperature distribution and film growth rate were analyzed. One-dimensional thermal resistance model considering thermal contact resistance and heat transfer area was made up at first to find the temperature drop at the surface of graphite board. This one-dimensional model predicted the temperature drop of 18K at the board surface. Temperature distribution of a reactor wall from the three-dimensional computational fluid dynamics analysis including the gap at the wafer position showed the temperature drop of 20K. Film growth rates of InP and GaAs were predicted using computational fluid dynamics technique with chemical reaction model. Temperature distribution from the three-dimensional heat transfer calculation was used as a thermal boundary condition to the film growth rate simulations. Temperature drop due to the thermal contact resistance affected to the GaAs film growth a little but not to the InP film growth.

Pressure Drop Characteristics on HTS Power Cables with LN2 Flow (초전도 케이블 냉각유로에서의 압력강하 특성)

  • Koh Deuk-Yong;Yeom Han-Kil;Lee Kwan-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.1
    • /
    • pp.81-86
    • /
    • 2006
  • High temperature superconducting (HTS) power cable requires forced sub-cooled LN2 flow cooling. Liquid nitrogen is circulated by a pump and cooled back by cooling system. Typical operating temperature range is expected to be between 65 K and 77 K. The HTS power cable needs sufficient cooling to overcome its low temperature heat load. For successful cooling, the hydraulic characteristics of the HTS power cable must be well investigated to design the cables. Especially, the pressure drop in the cable is an important design parameter, because the pressure drop decides the length of the cable, size of the coolant circulation pump and circulation pressure, etc. This paper describes measurement and investigation of the pressure drop of the cooling system. In order to reduce the total pressure drop of the cooling system, the flow rate of liquid nitrogen must be controlled by rotational speed of the circulation pump.

Survival, Oxygen Consumption and Stress Response of Parrotfish Oplegnathus fasciatus Exposed to Different Lower Temperature (돌돔(Oplegnathus fasciatus)의 생존, 산소소비 및 생리학적 반응에 미치는 저수온의 영향)

  • Shin, Yun Kyung;Choi, Young Jae;Kim, Won Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.5
    • /
    • pp.725-732
    • /
    • 2020
  • The sudden drop of water temperature in winter is very threatening factor that affects the productivity of farmed fish and the management in aquafarm. In this study, we investigated the effect of low temperature on the survival, oxygen consumption and stress responses of parrotfish Oplegnathus fasciatus due to acute drop of water temperature. The survival rate of parrotfish Oplegnathus fasciatus was 5% at 6℃, 95% at 8℃ and 100% at 10℃ on the 4th day of exposure in each experimental temperature. Low-lethal temperature for 4days of parrotfish Oplegnathus fasciatus (4 day-LT50) was 6.99℃ (confidence limit, 6.55-7.42℃). Oxygen consumption rate was significantly decreased with decreasing water temperature. Temperature coefficient (Q10) was found to be 4.0 between 10℃ and 8℃ and 0.39 between 8℃ and 6℃. As a result of investigating the stress response according to the drop in water temperature, the concentration of SOD (Superoxide dismutase), cortisol, glucose, total Ig, AST (Aspartate) and ALT (Alanine aminotransferase) increased with decreasing of water temperature. This study would be useful for the management of temperature about cultured fish.