Browse > Article
http://dx.doi.org/10.5657/KFAS.2020.0725

Survival, Oxygen Consumption and Stress Response of Parrotfish Oplegnathus fasciatus Exposed to Different Lower Temperature  

Shin, Yun Kyung (Aquaculture Industry Research Division, South Sea Fisheries Research Institute, NIFS)
Choi, Young Jae (Aquaculture Industry Research Division, South Sea Fisheries Research Institute, NIFS)
Kim, Won Jin (Chung cheongnam-do Institute of Fisheries Resources)
Publication Information
Korean Journal of Fisheries and Aquatic Sciences / v.53, no.5, 2020 , pp. 725-732 More about this Journal
Abstract
The sudden drop of water temperature in winter is very threatening factor that affects the productivity of farmed fish and the management in aquafarm. In this study, we investigated the effect of low temperature on the survival, oxygen consumption and stress responses of parrotfish Oplegnathus fasciatus due to acute drop of water temperature. The survival rate of parrotfish Oplegnathus fasciatus was 5% at 6℃, 95% at 8℃ and 100% at 10℃ on the 4th day of exposure in each experimental temperature. Low-lethal temperature for 4days of parrotfish Oplegnathus fasciatus (4 day-LT50) was 6.99℃ (confidence limit, 6.55-7.42℃). Oxygen consumption rate was significantly decreased with decreasing water temperature. Temperature coefficient (Q10) was found to be 4.0 between 10℃ and 8℃ and 0.39 between 8℃ and 6℃. As a result of investigating the stress response according to the drop in water temperature, the concentration of SOD (Superoxide dismutase), cortisol, glucose, total Ig, AST (Aspartate) and ALT (Alanine aminotransferase) increased with decreasing of water temperature. This study would be useful for the management of temperature about cultured fish.
Keywords
Low temperature tolerance range; Oplegnathus fasciatus; Survival; Stress response;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Kunz KI, Frickenhaus S, Hardenberg S, Johansen T, Leo E, Portner HO and Mark FC. 2016. New encounters in Arctic water a comparison of metabolism and performance of polar cod Boreogadus saida and Atlantic cod Gadus morhua under ocean acidification and warming. Polar Biol 39, 1137-1153.   DOI
2 Hazel JR and Prosser CL. 1974. Molecular mechanisms of temperature compensation on poikilotherms. Ohysiol Rev 54, 620-677. https://doi.org/10.1152/physrev.1974.54.3.620.   DOI
3 Huey RB and Stevenson RD. 1979. Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. Am Zool 19, 357-366. https://doi.org/10.1093/icb/19.1.357.   DOI
4 Ibarz A, Padros F, Gallardo MA, Fernandez-Borras J, Blasco J and Tort L. 2010. Low temperature challenges to gilthead sea bream culture: review of cold-induced alterations and ‘Winter Syndrome’. Rev Fish Biol Fisher 20, 539-556. https://doi.org/10.1007/s11160-010-9159-5.   DOI
5 Meng X, Liu P, Li J, Gao B and Chen P. 2014. Physiological responses of swimming crab Portunus tributerculatus under cold acclimation: Antioxidant defense and heat shock proteins. Aquaculture 434, 11-17. https://doi.org/10.1016/j.aquaculture.2014.07.021.   DOI
6 MERI (Marine Ecology Research Institute). 2000. Report of marine ecology research institute. Rep Mar Ecol Res Inst 2, 54-66.
7 Paital B. 2013. Antioxidant and oxidative stress parameters in brain of Heteropneustes fossilis under air exposure condition; role of mitochondrial electron transport chain. Ecotoxicol Environ Saf 95, 69-77. https://doi.org/10.1016/j.ecoenv.2013.05.016.   DOI
8 Perez E, Diaz F and Espina S. 2003. Themoregulatory behavior and critical thermal limits of the angelfish Pterophyllum scalare (Lichtenstein) (Pisces: Cichlidae). J Therm Biol 28, 531-537. https://doi.org/10.1016/S0306-4565(03)00055-X.   DOI
9 Sampaio FDF and Freire CA. 2016. An overview of stress physiology of fish transport: changes in water quality as a function of transport duration. Fish Physiol 17, 1055-1072. https://doi.org/10.1111/faf.12158.
10 Schmidt-Nielsen K. 1997. Animal physiology: Adaptation and Environment. Cambridge University Press, London U. K., 359.
11 Shin YK, Kim YD and Kim WJ. 2018. Survival and physiological responses of red sea bream Pagrus major with decreasing sea water temperature. Korean J Ichthyol 30, 131-136. https://doi.org/10.35399/ISK.30.3.1.   DOI
12 Smith MA and Hubert WA. 2003. Simulated thermal tempering versus sudden temperature change and short-term survival of fingerling rainbow trout. N Am J Aquac 65, 67-69. https://doi.org/10.1577/1548-8454(2003)065<0067:STTVST>2.0.CO;2.   DOI
13 Stanley JG and Colby PJ. 1971. Effects of temperature on electrolyte balance and osmoregulation in the alewife Alosa pseudoharengus in fresh and sea water. Trans Am Fish Soc 100, 624-638. https://doi.org/10.1577/1548-8659(1971)100<624:EOTOEB>2.0.CO;2.   DOI
14 Sun ZZ, Tan XH, Liu QY, Ye HQ, Zou CY, Xu ML, Zhang YF and Ye CX. 2019. Physiological, immune responses and liver lipid metabolism of orange-spotted grouper Epinephelus coioides under cold stress. Aquaculture 498, 545-555. https://doi.org/10.1016/j.aquaculture.2018.08.051.   DOI
15 Xiuping F, Qin X, Zhang C, Zhu Q and Chen J. 2019. Metabolic and anti-oxidative stress responses to low temperature during the waterless preservation of the hybrid grouper (Epinephleus fuscogutatus female $\times$Epinephelus lanceolatus male). Aquaculture 508, 10-18. https://doi.org/10.1016/j.aquaculture.2019.04.054.   DOI
16 Xu ZH, Regenstein JM, Xie DD, Lu WJ, Ren XC, Yuan JJ and Mao LC. 2018. The oxidative stress and antioxidant responses of Litopenaeus vannamei to low temperature and air exposure. Fish Shellfish Immunol 72, 564-571. https://doi.org/10.1016/j.fsi.2017.11.016.   DOI
17 Qi Z, Liu Y, Luo S, Chen C, Liu Y and Wang W. 2013. Molecular cloning, characterization and expression analysis of tumor suppressor protein p53 from orange-spotted grouper, Epinephelus coioides in response to temperature stress. Fish Shellfish Immun 35, 1466-1476. https://doi.org/10.1016/j.fsi.2013.08.011.   DOI
18 Bellgraph BJ, McMichael GA, Mueller RP and Monroe JL. 2010. Behavioural response of juvenile Chinook salmone Oncorhynchus tshawytscha during sudden temperature increase and implications for survivor. J Therm Biol 35, 6-10. https://doi.org/10.1016/j.jtherbio.2009.10.001.   DOI
19 Beitinger TL and Bennet WA. 2000. Quantification of the role of acclimation temperature in temperature tolerance of fishes. Environ Biol Fishes 58, 277-288.   DOI
20 Portner HO and Peck MA. 2010. Climate change effects on fishes and fisheries: towards a cause-and-effect understanding. J Fish Biol 77, 1745-1779. https://doi.org/10.1111/j.1095-8649.2010.02783.x.   DOI
21 Rauta PR, Nayak B and Das S. 2012. Immune system and immune responses in fish and their role in comparative immunity study: A model for higher organisms. Immunol Lett 148, 23-33. https://doi.org/10.1016/j.imlet.2012.08.003.   DOI
22 Reyes I, Díaz F, Denise A and Perez J. 2011. Behavioral thermoregulation, temperature tolerance and oxygen consumption in the Mexican bullseye puffer fish Sphoeroides annulatus Jenyns (1842), acclimated to different temperatures. J Thermal Biol 36, 200-205. https://doi.org/10.1016/j.jtherbio.2011.03.003.   DOI
23 Mazumder SK, Ghaffar MA, Tomiyama T and Das SK. 2019. Effects of acclimation temperature on the respiration physiology and thermal coefficient of Malabar blood snapper. Res Physiol Neurobiol 268, 103-113. https://doi.org/10.1016/j.resp.2019.103253.
24 Salvato B, Cuomo V, Di Muro R and Beltramini M. 2001. Effects of environmental parameters on the oxygen consumption of four marine invertebrates: a comparative factorial study. Mar Biol 138, 659-668.   DOI
25 Samaras A, Papandroulakis N, Costari M and Pavlidis M. 2016. Stress and metabolic indicators in a relatively high (European sea bass, Dicentrarchus labrax) and a low (meagre, Argyrosomus regius) cortisol responsive species, in different water temperatures. Aquacul Res 47, 3501-3515. https://doi.org/10.1111/are.12800.   DOI
26 Cheng CH, Ye CX, Guo ZX and Wang AL. 2017. Immune and physiological responses of pufferfish Takifugu obscurus under cold stress. Fish Shellfish Immunol 64, 137-145. https://doi.org/10.1016/j.fsi.2017.03.003.   DOI
27 Bicego KC, Barros RCH and Branco LGS. 2007. Physiology of temperature regulation: comparative aspects. Comp Biochem Physiol A 147, 616-639. https://doi.org/10.1016/j.cbpa.2006.06.032.
28 Burton T, Killen SS, Armstrong JD and Metcalfe NB. 2011. What causes intraspecific variation in resting metabolic rate and what are its ecological consequence?. Proc R Soc 278, 3465-3473. https://doi.org/10.1098/rspb.2011.1778.
29 Carvalho P and Phan V. 1997. Oxygen consumption and ammonia excretion of Xiphopenaeus kroyeri Heller (Penaeidae) in relation to mass temperature and experimental procedures shrimp oxygen uptake and ammonia excretion. J Exp Mar Biol Ecol 209, 143-156. https://doi.org/10.1016/S0022-0981(96)02703-7.   DOI
30 Chandra J, Samali A and Orrenius S. 2000. Triggering and modulation of apoptosis by oxidative stress. Free Radic Biol Med 3, 323-333. https://doi.org/10.1016/s0891-5849(00)00302-6.   DOI
31 Cho HC, Kim JE, Kim HB and Beak HJ. 2015. Effects of water temperature change on the hematological responses and plasma cortisol levels in growing of red spotted grouper, Epinephelus akaara. Dev Reprod 19, 19-24. https://doi.org/10.12717/devrep.2015.19.1.019.   DOI
32 Crawshaw LI. 1977. Physiological and behavioral reactions of fish to temperature change. J Fish Res Board Can 34, 730-734. https://doi.org/10.1139/f77-113.   DOI
33 Cooper CJ, Mueller C and Eme J. 2019. Temperature tolerance and oxygen consumption of two South American tetras, Paracheirodon innessi and Hyphessobrycon herbertaxelrodi. J Therm Biol 86, 1024-1034. https://doi.org/10.1016/j.jtherbio.2019.102434.
34 Díaz, F, Re A, Gonzalez R, Sánchez L, Leyva G and Valenzuela F. 2007. Temperature preference and oxygen consumption of the largemouth bass Micropterus salmoides (Lacepede) acclimated to different temperature. Aqua Res 38, 1387-1394. https://doi.org/10.1111/j.1365-2109.2007.01817.x.   DOI
35 Finney DJ. 1971. Probit analysis. 3rd. Cambridge University Press, London, U.K., 333.
36 Donaldson MR, Cooke SJ, Patterson DA and Macdonald JS. 2008. Cold shock and fish. J Fish Biol 73, 1491-1530. https://doi.org/10.1111/j.1095-8649.2008.02061.x.   DOI
37 Fazio F, Filiciotto F, Marafioti S, Di Stefano V, Assenza A, Placenti F and Mazzola SM. 2013. Automatic analysis to assess haematological parameters in farmed gilthead sea bream (Sparus aurata Linnaeus, 1758). Mar Freshw Behav Phys 45, 63-73. https://doi.org/10.1080/10236244.2012.677559.   DOI
38 Ferguson RMW, Merrifield DL, Harper GM, Rawling MD, Mustafa S, Picchietti S and Davies SJ. 2010. The effect of Pediococcus acidilactci on the gut microbiota and immune status of on-growing red tilapia Oreochromis niloticus. J App Microbiol 109, 851-862. https://doi.org/10.1111/j.1365-2672.2010.04713.x.   DOI
39 Fuiman LA and Batty RS. 1997. What a drag is getting cold: Partitioning the physical and physiological effects of temperature on fish swimming. J Exp Bio 200, 1745-1755.   DOI
40 Kim HJ, Lee HJ, Kim WJ and Shin YK. 2019. Survival, hematological and histological changes of file fish Thamnaconus modestus adult exposed to different lower temperature. Korean J Ichthyol 31, 201-207. https://doi.org/10.35399/ISK.31.4.3.   DOI
41 Kim KM, Lee JU, Moon TS, Lee CH, Yang MH, Kang YJ and Jo JY. 2008. Optimum feeding rate of parrot fish Oplegnathus fasciatus during the low temperature season. J Aquaculture 21, 299-303.
42 Kir M and Demirci O. 2018. Thermal tolerance and standard metabolic rate of juvenile European sea bass (Dicentrarchus labrax, Linnaeus, 1758) acclimated to four temperatures. J Thermal Biol 78, 209-213. https://doi.org/10.1016/j.jtherbio.2018.10.008.   DOI