• Title/Summary/Keyword: tapered pile

Search Result 14, Processing Time 0.022 seconds

Numerical comparison of bearing capacity of tapered pile groups using 3D FEM

  • Hataf, Nader;Shafaghat, Amin
    • Geomechanics and Engineering
    • /
    • v.9 no.5
    • /
    • pp.547-567
    • /
    • 2015
  • This study investigates the behavior of group of tapered and cylindrical piles. The bearing capacities of groups of tapered and cylindrical piles are computed and compared. Modeling of group of piles in this study is conducted in sand using three-dimensional finite element software. For this purpose, total bearing capacity of each group is firstly calculated using the load-displacement curve under specific load and common techniques. Then, the model of group of piles is reloaded under this calculated capacity to find group settlements, stress states on the lateral surfaces of group block, efficiency of group and etc. In order to calculate the efficiency of each group, single tapered and cylindrical piles are modeled separately. Comparison for both tapered and cylindrical group of piles with same volume is conducted and a relation to predict tapered pile group efficiency is developed. A parametric study is also performed by changing parameters such as tapered angle, angle of internal friction of sand, dilatancy angle of soil and coefficient of lateral earth pressure to find their influences on single pile and pile group behavior.

Performance evaluation of the lightweight concrete tapered piles under hammer impacts

  • Tavasoli, Omid;Ghazavi, Mahmoud
    • Geomechanics and Engineering
    • /
    • v.18 no.6
    • /
    • pp.615-626
    • /
    • 2019
  • Lightweight concrete (LWC) provides an attractive alternative to conventional piles by improving the durability of deep foundations. In this paper, the drivability of cylindrical and tapered piles made of lightweight and common concrete (CC) under hammer impacts was investigated by performing field tests and numerical analysis. The different concrete mixtures were considered to compare the mechanical properties of light aggregate which replaced instead of the natural aggregate. Driving tests were also conducted on different piles to determine how the pile material and geometric configurations affect driving performance. The results indicated that the tapering shape has an appropriate effect on the drivability of piles and although lower driving stresses are induced in the LWC tapered pile, their final penetration rate was more than that of CC cylindrical pile under hammer impact. Also by analyzing wave propagation in the different rods, it was concluded that the LWC piles with greater velocity than others had better performance in pile driving phenomena. Furthermore, LWC piles can be driven more easily into the ground than cylindrical concrete piles sometimes up to 50% lower hammer impacts and results in important energy saving.

Analysis of Free Vibration Characteristics of Tapered Friction Piles in Non-homogeneous Soil Layers (불균질 지반에 설치된 테이퍼 마찰말뚝의 자유진동 특성 분석)

  • Lee, Joon Kyu;Ko, Junyoung;Lee, Kwangwoo;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.3
    • /
    • pp.69-77
    • /
    • 2019
  • This paper presents a new analytical model for estimating the free vibration of tapered friction piles. The governing differential equation for the free vibration of statically axially-loaded piles embedded in non-homogeneous soil is derived. The equation is numerically integrated by the Runge-Kutta method, and then the eigenvalue of natural frequency is determined by the Regula-Falsi scheme. For a cylindrical non-tapered pile, the computed natural frequencies compare well with the available data from literature. Numerical examples are presented to investigate the effects of the tapering, the skin friction resistance, the end condition of the pile, the vertical compressive loading, and the soil non-homogeneity on the natural frequency and mode shape of tapered friction piles.

Buckling Behaviors of Tapered Piles (테이퍼 말뚝의 좌굴 거동)

  • Lee, Joon-Kyu;Kwon, O-Il;Jeong, Tae-Seok;Park, Su-Han
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.2
    • /
    • pp.19-27
    • /
    • 2019
  • In this study, an analytical model is proposed to estimate the buckling responses of tapered piles. The governing differential equation of the soil-pile system considering the tapering and side friction of the pile and the soil nonhomogeneity is derived, which is numerically integrated by the Runge-Kutta method and then the eigenvalue of bucking load is determined by Regula-Falsi algorithm. For a cylindrical pile, the results obtained from this study are found to compare well with those reported in literature. Illustrative examples for buckling load and stress as well as buckled shape are provided to investigate the effects of dimensionless parameters related to the soil-pile system.

Estimation of Axial toad Capacity for Tapered Piles Using Equivalent Transformation (등가변형을 이용한 테이터 말뚝의 지지력 산정)

  • Jun, Sung-Nam;Seo, Kyung-Bum;Song, Won-Jun;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.8
    • /
    • pp.57-64
    • /
    • 2009
  • In this study, a method using equivalent transformation for estimation of the axial load capacity of tapered piles is proposed. While preexistent methods for estimating the axial load capacity of tapered piles have been based on the effect of soil state and taper angle, a new design method is proposed considering cone resistance $q_c$ and equivalent transformation in sand. Through tapered pile simplified by using equivalent transformation, a new method fur quick and easy estimation of the axial load capacity of tapered pile is proposed for practical use. In order to verify the proposed method, calibration chamber test and field test were conducted. In calibration chamber test, comparison of estimated axial load capacity with measured one showed that the standard deviation and COV (Coefficient Of Variation) of estimated $Q_t$ is $0.05{\sim}0.121$, $0.04{\sim}0.05$ respectively. For field test, axial load capacity by proposed method shows 2.5% under-estimation in comparison with measured value. As a result, it is found that proposed method produces satisfactory predictions for tapered piles.

Influence of Taper Angle on Axial Behavior of Tapered Piles in Sand (모래지반에서 테이퍼 각도가 테이퍼말뚝의 연직거동에 미치는 영향)

  • Paik, Kyu-Ho;Lee, Jun-Hwan;Kim, Dae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.8
    • /
    • pp.69-76
    • /
    • 2007
  • Axial behavior of tapered piles is affected by taper angle, stress state of soils, soil frictional angle and pile-soil interface friction angle. In this paper, a series of model pile load tests were performed using a calibration chamber in order to investigate the effect of taper angle on the axial response of cast-in-place tapered piles in sand. According to results of the tests, as taper angle of piles increased, the shaft load capacity of piles increased but its base load capacity decreased. The unit base load capacity of piles increased with increasing taper angle for medium sand but decreased for dense sand. The ratio of shaft to total load capacity increased with increasing taper angle and with decreasing relative density of soils. The test results also showed that total load capacity per unit pile volume increased with increasing taper angle for medium sand, but it decreased for dense sand. Therefore, it can be stated that tapered piles are economically more beneficial for medium sand than for dense sand.

Vibration Characteristics of Tapered Piles Embedded in an Elastic Medium (탄성매체에 근입된 변단면 말뚝의 진동 특성)

  • Oh, Sang-Jin;Kang, Hee-Jong;Lee, Jae-Young;Park, Kwang-Kyou;Mo, Jeong-Man
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.832-835
    • /
    • 2005
  • The free vibration of tapered piles embedded in soil is investigated. The pile model is based on the Bernoulli-Euler beam theory and the soil is idealized as a Winkler model for mathematical simplicity. The governing differential equations for the free vibrations of such members are solved numerically. The square tapered piles with one free and the other hinged end with rotational spring are applied in numerical examples. The lowest two natural frequencies are obtained over a range of non-dimensional system parameters: the rotational spring parameter, the embedded ratio, the foundation parameter, the width ratio of the contact area and the section ratio.

  • PDF

Axial Behavior of Non-Displacement Tapered Piles in Sand (모래지반에서 비배토 테이퍼말뚝의 연직거동 특성)

  • Paik, Kyu-Ho;Lee, Jun-Hwan;Kim, Dae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.8
    • /
    • pp.35-45
    • /
    • 2007
  • It is known that the response of piles is affected by the shape of pile as well as soil conditions. In order to investigate the characteristics of the axial responses and bearing capacities of non-displacement tapered and cylindrical piles in sands, 12 model pile load tests using a calibration chamber were conducted on model tapered and cylindrical piles, which were specially manufactured to measure the base and shaft load capacities independently. Results of the model tests showed that the shaft load of tapered piles continuously increased with pile settlement, whereas the shaft load of cylindrical piles reached ultimate values at a settlement equal to 4% of pile diameter. Therefore, taper piles have greater shaft loads than cylindrical one at the same settlement. It is also observed that the total load capacity of tapered piles is lower than cylindrical piles for dense sand but is greater than that of cylindrical piles for medium sand. The ultimate unit base resistance of tapered piles was greater than that of cylindrical piles for lateral earth pressure ratio greater than 0.4, and the shaft resistance was greater than that of cylindrical piles irrespective of lateral earth pressure ratio.

Estimation of Bearing Capacity of Non-Displacement Piles in Sand Considering Pile Shape (모래지반에서 말뚝형태를 고려한 비배토말뚝의 지지력 산정)

  • Paik, Kyu-Ho;Lee, Jun-Hwan;Kim, Dae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.5
    • /
    • pp.101-110
    • /
    • 2007
  • In order to investigate the effect of the pile shape on the bearing capacity of non-displacement piles, a series of model pile load tests were performed using a calibration chamber and three model piles with different shape. Results of the model tests showed that the bearing capacity of tapered piles was affected by its taper angle as well as the stress states and relative density of soil. Based on the results of model pile load tests, a new design equation for estimation of the bearing capacity of non-displacement piles was proposed, and it takes into account the effect of the taper angles on the bearing capacity of non-displacement piles.

Estimation of Rotation Point of Laterally Loaded Piles through Laboratory Test (실내모형 실험을 통한 수평재하말뚝의 회전점 산정)

  • Hwang, Sung-Wook;Hong, Jung-Moo;Lee, Jun-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.744-747
    • /
    • 2008
  • In this study, to analyze the rotation point of piles, the laboratory lateral load test was performed. The lateral load bearing capacity is one of the important factor related with structure failure directly. Analyzing rotation point in different soil condition, relative density and stress condition, leads more accurate ultimate lateral bearing capacity. Also, reliability was analyzed about established 예측식 as applying to tapered pile. As a result, the established prediction was suitable to cylider pile, but not to tapered pile.

  • PDF