Browse > Article
http://dx.doi.org/10.12989/gae.2015.9.5.547

Numerical comparison of bearing capacity of tapered pile groups using 3D FEM  

Hataf, Nader (Department of Civil and Environmental Engineering, Shiraz University)
Shafaghat, Amin (Department of Civil and Environmental Engineering, Shiraz University)
Publication Information
Geomechanics and Engineering / v.9, no.5, 2015 , pp. 547-567 More about this Journal
Abstract
This study investigates the behavior of group of tapered and cylindrical piles. The bearing capacities of groups of tapered and cylindrical piles are computed and compared. Modeling of group of piles in this study is conducted in sand using three-dimensional finite element software. For this purpose, total bearing capacity of each group is firstly calculated using the load-displacement curve under specific load and common techniques. Then, the model of group of piles is reloaded under this calculated capacity to find group settlements, stress states on the lateral surfaces of group block, efficiency of group and etc. In order to calculate the efficiency of each group, single tapered and cylindrical piles are modeled separately. Comparison for both tapered and cylindrical group of piles with same volume is conducted and a relation to predict tapered pile group efficiency is developed. A parametric study is also performed by changing parameters such as tapered angle, angle of internal friction of sand, dilatancy angle of soil and coefficient of lateral earth pressure to find their influences on single pile and pile group behavior.
Keywords
group of pile; tapered pile; bearing capacity; 3D modeling; finite element;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 D'Appolonia, E. and Hribar, J.A. (1963), "Load transfer in step-tapered piles", Soil Mech. Found. Div., ASCE, 89(6), 57-77.
2 El Naggar, M.H. and Wei, J.Q. (1999a), "Axial capacity of tapered piles established from model tests", Can. Geotech. J., 36(6), 1185-1194.   DOI
3 El Naggar, M.H. and Wei, J.Q. (1999b), "Response of tapered piles subjected to lateral loading", Can. Geotech. J., 36(1), 52-71.   DOI
4 El Naggar, M.H. and Sakr, M. (2000), "Evaluation of axial performance of tapered piles from centrifuge tests", Can. Geotech. J., 37(6), 1295-1308.   DOI
5 El Naggar, M.H. and Wei, J.Q. (2000), "Uplift behavior of tapered piles established from model tests", Can. Geotech. J., 37(1), 56-74.   DOI
6 Bakholdin, B.V. (1971), "Bearing capacity of pyramidal piles", Proceedings of the 4th Conference on Soil Mechanics and Foundation Engineering, Budapest, Hungary, pp. 507-510.
7 Ghazavi, M. and Lavasan, A.A. (2006), "Bearing capacity of tapered and step-tapered piles subjected to axial compressive loading", Proceedings of the 7th International Conference on Coasts, Ports & Marine Structures, ICOPMAS, Tehran, Iran.
8 Fattah, M.Y., Yousif, M.A. and Al-Tameemi, S.M.K. (2015), "Effect of pile group geometry on bearing capacity of piled raft foundations", Struct. Eng. Mech., Int. J., 54(5), 829-853.   DOI
9 Eslami, A. and Fellenius, B.H. (1997), "Pile capacity by direct CPT and CPTu methods applied to 102 case histories", Can. Geotech. J., 34(6), 886-904.   DOI
10 Ghasemi, M. (2006), "Experimental investigation of bearing capacity of pyramidal piles in sand", M.Sc. Thesis; Soil Mechanics & Foundation, Yazd University, Iran.
11 Hanna, A.M., Morcous, G. and Helmy, M. (2004), "Efficiency of pile groups installed in cohesionless soil using artificial neural networks", Can. Geotech. J., 41(6), 1241-1249.   DOI
12 Khan, M., Kamran, M., El Naggar, H. and Elkasabgy, M. (2008), "Compression testing and analysis of drilled concrete tapered piles in cohesive-frictional soil", Can. Geotech. J., 45(3), 377-392.   DOI
13 Kishida, H. and Meyerhof, G.G. (1965), "Bearing capacity of pile group under eccentric loads in sand", Soil Mech. Fdn. Eng. Conf. Proc., Canada.
14 Kodikara, J.K. and Moore, I.D. (1993), "Axial response of tapered piles in cohesive frictional ground", Geotech. Eng., 119(4), 675-693.   DOI
15 Nordlund, R.L. (1963), "Bearing capacity of piles in cohesionless soils", Soil Mech. Found. Div., ASCE, 89(3), 1-36.
16 Paik, K., Lee, J. and Kim, D. (2011), "Axial response and bearing capacity of tapered piles in sandy soil", Geotech. Test. J., 34(2), 122-130.
17 Surfer 8 user's manual version 4.1 (2009), Copyright Golden Software, USA.
18 Ren, Q.X., Hou, C., Lam, D. and Han, L.H. (2014), "Experiments on the bearing capacity of tapered concrete filled double skin steel tubular (CFDST) stub columns", Steel Compos. Struct., Int. J., 17(5), 667-686.   DOI
19 Robinsky, E.L. and Morrison, C.F. (1964), "Sand displacement and compaction around model friction piles", NRC Research; Can. Geotech. J., 1(2), 81-93. DOI: 10.1139/t64-002   DOI
20 Rybnikov, A.M. (1990), "Experimental investigations of bearing capacity of bored-cast-in-place tapered piles", Soil Mech. Found. Eng., 27(2), 48-52.   DOI
21 Us army corps of engineers (1997), EL 02 CO97, US Army Publication, USA.
22 Veiskarami, M., Eslami, A. and Kumar, J. (2011), "End-bearing capacity of driven piles in sand using the stress characteristics method: Analysis and implementation", Can. Geotech. J., 48(10), 1570-1586.   DOI
23 Vesic, A.S. (1967), "Ultimate loads and settlements of deep foundations in sand", Duke University, Durham, NC, USA.
24 Vesic, A.S. (1969), "Experiments with instrumented pile groups in sand", Duke University, School of Engineering.
25 Vesic, A. (1975), "Bearing capacity of shallow foundations", Foundation Engineering Handbook 3, pp. 121-145.
26 Wei, J. and El Naggar, M.H. (1998), "Experimental study of axial behavior of tapered piles", Can. Geotech. J., 35(4), 641-654.   DOI
27 Whitaker, T. (1957), "Experiments with model piles in groups", Geotechnique, 7(4), 147-167.   DOI
28 Zhan, Y.G., Wang, H. and Liu, F.C. (2012), "Numerical study on load capacity behavior of tapered pile foundations", Electron. J. Geotech. Eng., 17, 1969-1980.