• 제목/요약/키워드: symplectic action

검색결과 12건 처리시간 0.017초

EQUIVARIANT EMBEDDING OF TWO-TORUS INTO SYMPLECTIC MANIFOLD

  • Kim, Min Kyu
    • 충청수학회지
    • /
    • 제20권2호
    • /
    • pp.157-161
    • /
    • 2007
  • We show that there is an equivariant symplectic embedding of a two-torus with a nontrivial action into a symplectic manifold with a symplectic circle action if and only if the circle action on the manifold is non-Hamiltonian. This is a new equivalent condition for non-Hamiltonian action and gives us a new insight to solve the famous conjecture by Frankel and McDuff.

  • PDF

ON ACTION SPECTRUM BUNDLE

  • Cho, Yong-Seung;Yoon, Jin-Yue
    • 대한수학회보
    • /
    • 제38권4호
    • /
    • pp.741-751
    • /
    • 2001
  • In this paper when $(M, \omega)$ is a compact weakly exact symplectic manifold with nonempty boundary satisfying $c_1|{\pi}_2(M)$ = 0, we construct an action spectrum bundle over the group of Hamil-tonian diffeomorphisms of the manifold M generated by the time-dependent Hamiltonian vector fields, whose fibre is nowhere dense and invariant under symplectic conjugation.

  • PDF

A NOTE ON HOFER'S NORM

  • Cho, Yong-Seung;Kwak, Jin-Ho;Yoon, Jin-Yue
    • 대한수학회보
    • /
    • 제39권2호
    • /
    • pp.277-282
    • /
    • 2002
  • We Show that When ($M,\;\omega$) is a closed, simply connected, symplectic manifold for all $\gamma\;\in\;\pi_1(Ham(M),\;id)$ the following inequality holds: $\parallel\gamma\parallel\;{\geq}\;sup_{\={x}}\;|A(\={x})|,\;where\;\parallel\gamma\parallel$ is the coarse Hofer's norm, $\={x}$ run over all extensions to $D^2$ of an orbit $x(t)\;=\;{\varphi}_t(z)$ of a fixed point $z\;\in\;M,\;A(\={x})$ the symplectic action of $\={x}$, and the Hamiltonian diffeomorphisms {${\varphi}_t$} of M represent $\gamma$.

NORMALIZATION OF THE HAMILTONIAN AND THE ACTION SPECTRUM

  • OH YONG-GEUN
    • 대한수학회지
    • /
    • 제42권1호
    • /
    • pp.65-83
    • /
    • 2005
  • In this paper, we prove that the two well-known natural normalizations of Hamiltonian functions on the symplectic manifold ($M,\;{\omega}$) canonically relate the action spectra of different normalized Hamiltonians on arbitrary symplectic manifolds ($M,\;{\omega}$). The natural classes of normalized Hamiltonians consist of those whose mean value is zero for the closed manifold, and those which are compactly supported in IntM for the open manifold. We also study the effect of the action spectrum under the ${\pi}_1$ of Hamiltonian diffeomorphism group. This forms a foundational basis for our study of spectral invariants of the Hamiltonian diffeomorphism in [8].

CLASSIFICATION OF ORDER SIXTEEN NON-SYMPLECTIC AUTOMORPHISMS ON K3 SURFACES

  • Tabbaa, Dima Al;Sarti, Alessandra;Taki, Shingo
    • 대한수학회지
    • /
    • 제53권6호
    • /
    • pp.1237-1260
    • /
    • 2016
  • In the paper we classify complex K3 surfaces with non-symplectic automorphism of order 16 in full generality. We show that the fixed locus contains only rational curves and points and we completely classify the seven possible configurations. If the Picard group has rank 6, there are two possibilities and if its rank is 14, there are five possibilities. In particular if the action of the automorphism is trivial on the Picard group, then we show that its rank is six.

PRIMITIVE CIRCLE ACTIONS ON ALMOST COMPLEX MANIFOLDS WITH ISOLATED FIXED POINTS

  • Jang, Donghoon
    • East Asian mathematical journal
    • /
    • 제35권3호
    • /
    • pp.357-363
    • /
    • 2019
  • Let the circle act on a compact almost complex manifold M with a non-empty discrete fixed point set. To each fixed point, there are associated non-zero integers called weights. A positive weight w is called primitive if it cannot be written as the sum of positive weights, other than w itself. In this paper, we show that if every weight is primitive, then the Todd genus Todd(M) of M is positive and there are $Todd(M){\cdot}2^n$ fixed points, where dim M = 2n. This generalizes the result for symplectic semi-free actions by Tolman and Weitsman [8], the result for semi-free actions on almost complex manifolds by the author [6], and the result for certain symplectic actions by Godinho [1].

FLOER MINI-MAX THEORY, THE CERF DIAGRAM, AND THE SPECTRAL INVARIANTS

  • Oh, Yong-Geun
    • 대한수학회지
    • /
    • 제46권2호
    • /
    • pp.363-447
    • /
    • 2009
  • The author previously defined the spectral invariants, denoted by $\rho(H;\;a)$, of a Hamiltonian function H as the mini-max value of the action functional ${\cal{A}}_H$ over the Novikov Floer cycles in the Floer homology class dual to the quantum cohomology class a. The spectrality axiom of the invariant $\rho(H;\;a)$ states that the mini-max value is a critical value of the action functional ${\cal{A}}_H$. The main purpose of the present paper is to prove this axiom for nondegenerate Hamiltonian functions in irrational symplectic manifolds (M, $\omega$). We also prove that the spectral invariant function ${\rho}_a$ : $H\;{\mapsto}\;\rho(H;\;a)$ can be pushed down to a continuous function defined on the universal (${\acute{e}}tale$) covering space $\widetilde{HAM}$(M, $\omega$) of the group Ham((M, $\omega$) of Hamiltonian diffeomorphisms on general (M, $\omega$). For a certain generic homotopy, which we call a Cerf homotopy ${\cal{H}}\;=\;\{H^s\}_{0{\leq}s{\leq}1}$ of Hamiltonians, the function ${\rho}_a\;{\circ}\;{\cal{H}}$ : $s\;{\mapsto}\;{\rho}(H^s;\;a)$ is piecewise smooth away from a countable subset of [0, 1] for each non-zero quantum cohomology class a. The proof of this nondegenerate spectrality relies on several new ingredients in the chain level Floer theory, which have their own independent interest: a structure theorem on the Cerf bifurcation diagram of the critical values of the action functionals associated to a generic one-parameter family of Hamiltonian functions, a general structure theorem and the handle sliding lemma of Novikov Floer cycles over such a family and a family version of new transversality statements involving the Floer chain map, and many others. We call this chain level Floer theory as a whole the Floer mini-max theory.

On Semisimple Representations of the Framed g-loop Quiver

  • Choy, Jaeyoo
    • Kyungpook Mathematical Journal
    • /
    • 제57권4호
    • /
    • pp.601-612
    • /
    • 2017
  • Let Q be the frame g-loop quiver, i.e. a generalized ADHM quiver obtained by replacing the two loops into g loops. The vector space M of representations of Q admits an involution ${\ast}$ if orthogonal and symplectic structures on the representation spaces are endowed. We prove equivalence between semisimplicity of representations of the ${\ast}-invariant$ subspace N of M and the orbit-closedness with respect to the natural adjoint action on N. We also explain this equivalence in terms of King's stability [8] and orthogonal decomposition of representations.

TOPOLOGICAL METHOD DOES NOT WORK FOR FRANKEL-MCDUFF CONJECTURE

  • Kim, Min Kyu
    • 충청수학회지
    • /
    • 제20권1호
    • /
    • pp.31-35
    • /
    • 2007
  • In dealing with transformation group, topological approach is very natural. But, it is not sufficient to investigate geometric properties of transformation group and we need geometric method. Frankel-McDuff Conjecture is very interesting in the point that it shows struggling between topological method and geometric method. In this paper, the author suggest generalized Frankel-McDuff conjecture as a topological version of the conjecture and construct a counterexample for the generalized version, and from this we assert that topological method does not work for Frankel-McDuff Conjecture.

  • PDF