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PRIMITIVE CIRCLE ACTIONS ON ALMOST COMPLEX

MANIFOLDS WITH ISOLATED FIXED POINTS

Donghoon Jang

Abstract. Let the circle act on a compact almost complex manifold M

with a non-empty discrete fixed point set. To each fixed point, there are

associated non-zero integers called weights. A positive weight w is called
primitive if it cannot be written as the sum of positive weights, other than

w itself. In this paper, we show that if every weight is primitive, then the

Todd genus Todd(M) of M is positive and there are Todd(M) · 2n fixed
points, where dimM = 2n. This generalizes the result for symplectic semi-

free actions by Tolman and Weitsman [8], the result for semi-free actions

on almost complex manifolds by the author [6], and the result for certain
symplectic actions by Godinho [1].

1. Introduction

The main purpose of this paper is to define the notion of a primitive circle
action on an almost complex manifold with isolated fixed points and prove that
if a compact almost complex manifold admits a primitive circle action with
isolated fixed points, then its Todd genus Todd(M) is positive, and there are
Todd(M) · 2n fixed points, where dimM = 2n. This generalizes the result for
semi-free symplectic circle actions on symplectic manifolds with isolated fixed
points by Tolman and Weitsman [8], the result for semi-free circle actions on
almost complex manifolds with isolated fixed points by the author [6], and the
result for certain symplectic circle actions on 6-dimensional symplectic mani-
folds with isolated fixed points by Godinho [1].

An almost complex manifold is a pair (M,J) where M is a manifold and
J : TM −→ TM is a smooth map, such that for any m ∈ M , J restricts to a
linear map Jm on the tangent space TmM to M at m, i.e., Jm : TmM −→ TmM ,
and J2

m = −Im on TmM , where Im is the identity map on TmM .
Let the circle S1 act on an almost complex manifold (M,J). Throughout

this paper, we assume that the action preserves the almost complex structure J .
That is, dg ◦ J = J ◦ dg for any g ∈ S1. Let p be an isolated fixed point. Then
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we can identify the tangent space TpM to M at p with Cn, where dimM = 2n.
The circle action on TpM is then identified with

g · (z1, · · · , zn) = (gwp1z1, · · · , gwpnzn),

where g ∈ S1 ⊂ C, zi are complex coordinates, and wpi are non-zero integers,
1 ≤ i ≤ n. The non-zero integers wpi are called weights at p. For results on
circle actions on almost complex manifolds, see [2], [5], [6], [7], etc.

Let the circle act on a compact almost complex manifold M with isolated
fixed points. Denote by A = {w1, · · · , wl} the multiset of the collection of the
absolute values of all of the weights among all of the fixed points, counted with
multiplicity, such that for each positive integer w ∈ A, the multiplicity of w in
A is equal to

max
p∈MS1

|{i : |wpi| = w}|.

In addition, for each positive integer j, denote by

Aj = {wk1
+ wk2

+ · · ·+ wkj
|wki

∈ A, k1 < k2 < · · · < kj}.
Note that the Ai are multisets. A positive weight w ∈ A is called primitive, if
w /∈ Aj for j ≥ 2. That is, w is never equal to the sum of the absolute values
of weights among all the fixed points, counted with multiplicity, other than w
itself. The circle action is called primitive, if every positive weight is primitive.

For instance, let the circle act on S2 × S2 × S2 by rotating each 2-sphere 3
times, 5 times, and 7 times, respectively. The action has 8 fixed points, and the
weights at each fixed point are {±3,±5,±7}. We have that A = A1 = {3, 5, 7},
A2 = {8, 10, 12}, and A3 = {15}. For any w ∈ A, we have that w /∈ A2 and
w /∈ A3. Therefore, the action is primitive.

For an almost complex manifold M , the Hirzebruch χy-genus χy(M) of M

is the genus belonging to the power series x(1+ye−x(1+y))
1+e−x(1+y) . If dimM = 2n, then

the Hirzebruch χy(M) of M can be written as χy(M) =
∑n

i=0 χ
i(M) · yi for

some integers χi(M), 0 ≤ i ≤ n. The Hirzebruch χy-genus χy(M) with y = 0
is the Todd genus of M . That is, the Todd genus of M is the genus belonging
to the power series x

1−e−x . In this paper, we prove that if a compact almost
complex manifold M admits a primitive circle action with isolated fixed points,

then its Todd genus is positive, and there are precisely Todd(M) · 2 dimM
2 fixed

points.

Theorem 1.1. Let the circle act on a compact almost complex manifold M with
a non-empty discrete fixed point set. If the action is primitive, then Todd(M) >
0 and χy(M) = Todd(M) · (1−y)n, where dimM = 2n. In particular, there are
Todd(M) · 2n fixed points, and the number of fixed points which have exactly i
negative weights is equal to Todd(M) ·

(
n
i

)
for each i such that 0 ≤ i ≤ n.

In other words, if an almost complex manifold M admits a primitive circle
action with isolated fixed points, then the Hirzebruch χy-genus of M is χy(M) =
Todd(M) · (1− y)n =

∑n
i=0(−1)iTodd(M) ·

(
n
i

)
· yi. The proof of Theorem 1.1

is given in the last section. For an action of a group G on a manifold M , denote
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by MG the fixed point set; that is, MG = {p ∈ M | g · p = p for every g ∈ G}.
An action of a group G on a manifold M is called free, if for every m ∈M we
have g ·m 6= m for any g ∈ G such that g 6= e, where e is the identity element of
G. An action of a group G on a manifold M is called semi-free, if the action
is free on M \MG, that is, the action is free outside the fixed point set.

If a circle action on a compact almost complex manifold with isolated fixed
points is semi-free, the author proves in [6] that there are Todd(M) · 2n fixed
points. If the action is semi-free, then every weight is equal to either +1 or −1.
Then we have that A = A1 = {1, · · · , 1} in which the multiplicity of 1 in A is
n where dimM = 2n, A2 = {2, · · · , 2}, · · · , An = {n}. This means that any
semi-free action is primitive. Therefore, Theorem 1.1 recovers the result for a
semi-free circle action as a particular case.

Corollary 1.2. [6] Let the circle act semi-freely on a compact almost com-
plex manifold M with isolated fixed points. Then Todd(M) > 0 and χy(M) =
Todd(M) · (1 − y)n, where dimM = 2n. In particular, there are Todd(M) · 2n
fixed points, and the number of fixed points which have exactly i negative weights
is equal to Todd(M) ·

(
n
i

)
for each i such that 0 ≤ i ≤ n.

In [8], Tolman and Weitsman prove that if the circle acts semi-freely and
symplectically on a compact symplectic manifold with a non-empty discrete
fixed point set, then the action must be Hamiltonian, and there are 2n fixed
points, where dimM = 2n. This is reproved in [7]. Every symplectic manifold
admits a compatible almost complex structure J , and any symplectic circle
action on a symplectic manifold is a particular case of a circle action on an
almost complex manifold (M,J) preserving the almost complex structure J . Let
the circle act semi-freely and symplectically on a compact symplectic manifold
with isolated fixed points. Since the action is semi-free, every weight is equal to
either +1 or −1. It follows that the action is primitive. Therefore, by Theorem
1.1, it follows that Todd(M) > 0 and there are Todd(M) · 2n fixed points.
On the other hand, Todd(M) = N0, where N0 is the number of fixed points
which have no negative weights. Since N0 > 0, this implies that the action is
Hamiltonian. Any Hamiltonian circle action has a unique fixed point which has
no negative weights. This means that Todd(M) = N0 = 1. Therefore, as a
corollary of Theorem 1.1, we recover the result by Tolman and Weitsman, and
by Li.

Corollary 1.3. [7], [8] Let the circle act semi-freely and symplectically on a
compact, connected symplectic manifold M with a non-empty discrete fixed point
set. Then the action is Hamiltonian and χy(M) = (1−y)n, where dimM = 2n.
In particular, there are 2n fixed points.

Consider a symplectic circle action on a 6-dimensional compact connected
symplectic manifold M with fixed points whose weights are {±a,±b,±c} for
some positive integers a, b, and c. Without loss of generality, let a ≤ b ≤ c.
In [1], Godinho proves that if a + b 6= c, then the symplectic action is in fact



360 D. JANG

Hamiltonian, and there are 8 fixed points. Since a ≤ b ≤ c and a + b 6= c, the
action is primitive. As another corollary of Theorem 1.1, we recover the result
by Godinho.

Corollary 1.4. [1] Let the circle act symplectically on a 6-dimensional com-
pact connected symplectic manifold M with fixed points, whose weights are
{±a,±b,±c} for some positive integers a, b, and c such that a ≤ b ≤ c. If
a+ b 6= c, then the action is Hamiltonian. Moreover, there are 8 fixed points.

A detailed proof of Corollary 1.4 is given in the last section.
The conclusion of Theorem 1.1 need not hold if an action is not primitive.

For instance, let the circle act on CP2 by

g · [z0 : z1 : z2] = [z0 : g2z1 : g5z2],

where g ∈ S1 ⊂ C. The action has three fixed points [1 : 0 : 0], [0 : 1 : 0], and
[0 : 0 : 1], and the weights at the fixed points are {2, 5}, {−2, 3}, and {−3,−5},
respectively. We have that A = A1 = {2, 3, 5}, A2 = {5, 7, 8}, and A3 = {10}.
Since 5 ∈ A and 5 ∈ A2, the action is not primitive, and hence the number of

fixed points need not be of the form Todd(M) · 2 dimM
2 = Todd(M) · 22.

2. Background

Throughout this section, we assume that M is a compact almost complex
manifold, equipped with a circle action, having isolated fixed points. Fix an
integer w. For each fixed point p, denote by Np(w) the number of times the
weight w occurs at p. That is, Np(w) = |{i : wpi = w}|.

As in the Introduction, for an almost complex manifold M , the Hirzebruch

χy-genus χy(M) of M is the genus belonging to the power series x(1+ye−x(1+y))
1+e−x(1+y) .

Let χy(M) =
∑n

i=0 χ
i(M) · yi for some integers χi(M), 0 ≤ i ≤ n, where

dimN = 2n. For a circle action on a compact almost complex manifold M with
isolated fixed points, in [7] Li proves that the equivariant index of Dolbeault
type operator on M is rigid; it is independent of the choice of an element of
S1 and is equal to the Hirzebruch χy-genus of M . As a result, Li proves the
following formula:

Theorem 2.1. [7] Let the circle act on a 2n-dimensional compact almost com-
plex manifold M with isolated fixed points. Then

χi(M) =
∑

p∈MS1

σi(t
wp1 , · · · , twpn)∏n
j=1(1− twpj )

= (−1)iNi = (−1)n−iNn−i,

where t is an indeterminate, σi is the i-th elementary symmetric polynomial in
n variables, and Ni is the number of fixed points which have i negative weights.

There is an intimate relationship between weights among all of the fixed
points; for each time a weight w occurs, there exists a weight −w. This is
proved in [2], and is reproved in [7] using Theorem 2.1.
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Lemma 2.2. [2], [7] Let the circle act on a compact almost complex manifold
M with isolated fixed points. Fix an integer w. Then the number of times the
weight w occurs among all of the fixed points, counted with multiplicity, is equal
to the number of times the weight −w occurs among all of the fixed points,
counted with multiplicity. That is,∑

p∈MS1

Np(w) =
∑

p∈MS1

Np(−w).

Lemma 2.2 enables us to associate a labeled, directed multigraph to M . First,
assign a vertex to each fixed point. If a fixed point p has a positive weight w, by
Lemma 2.2 there exists a fixed point q which has weight −w. Therefore, we can
draw an edge from p to q, giving the label w to the edge. In fact, there exists
a fixed point q which has weight −w and p 6= q. Therefore, we can associate a
labeled directed multigraph which does not have any self-loop. For this, see [3]
and [6].

For a fixed point p, let np be the number of negative weights at p. The
following lemma is the key lemma to prove Theorem 1.1, which is proved in [4].

Lemma 2.3. [4] Let the circle act on a 2n-dimensional compact almost complex
manifold with isolated fixed points. Let w be a primitive weight. Then for each
integer i such that 0 ≤ i ≤ n − 1, the number of times the weight w occurs
at fixed point p with np = i, counted with multiplicity, is equal to the number
of times the weight −w occurs at fixed points p with np = i + 1, counted with
multiplicity. That is, for each integer i such that 0 ≤ i ≤ n− 1,∑

p∈MS1 ,np=i

Np(w) =
∑

p∈MS1 ,np=i+1

Np(−w).

3. Proof of Theorem 1.1

Proof of Theorem 1.1. First, we show that there exists a fixed point p with
np = 0. Let p be any fixed point. If np = 0, then the claim holds. Suppose that
np > 0. Then p has a negative weight −w for some positive integer w. Since
the action is primitive, w is a primitive weight. Therefore, by applying Lemma
2.3 for i = np − 1 and the primitive weight w, there exists a fixed point p′ such
that np′ = np − 1 and p′ has weight +w. If np′ = 0, then the claim holds. If
np′ > 0, then apply the same argument above; p′ has a negative weight −w′
where w′ is primitive, and hence by applying Lemma 2.3 for i = np′ − 1 with
the primitive weight w′, there exists a fixed point p′′ such that np′′ = np′ − 1
and p′′ has weight +w′. Continuing the argument, we have that there exists a
fixed point p0 such that np0

= 0.
Second, we prove that Nk = N0 ·

(
n
k

)
for each integer k such that 0 ≤ k ≤ n,

where dimM = 2n and Nk is the number of fixed points which have k negative
weights. Consider N0. For each positive weight w at a fixed point p0 with
np0 = 0, w is primitive by the assumption, and hence by Lemma 2.3 for i = 0
and w, there must exist a fixed point p1 such that np1

= 1 and p1 has weight
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−w. The number of fixed points p0 with np0 = 0 is N0 and every fixed point p0
with np0

= 0 has n positive weights, which are all primitive. Moreover, every
fixed point p1 with np1

= 1 has 1 negative weight. Therefore, by considering
Lemma 2.3 for i = 0 and for all primitive weights, it follows that the total
number n ·N0 of positive weights at fixed points p0 with np0 = 0 is equal to the
total number N1 of negative weights at fixed points p1 with np1 = 1. That is,
N1 = n ·N0.

Suppose that the claim holds for k = m such that k < n. As above, since
every positive weight w at a fixed point pm with npm

= m is primitive, by
applying Lemma 2.3 for i = m and w, there must exist a fixed point pm+1 such
that npm+1 = m+ 1 and −w is a weight at pm+1. By inductive hypothesis, the

number Nm of fixed points pm with npm
= m is equal to N0 ·

(
n
m

)
, and each fixed

point pm with npm
= m has (n −m) positive weights, which are all primitive.

Moreover, every fixed point pm+1 with npm+1
= m + 1 has m + 1 negative

weights. Therefore, by considering Lemma 2.3 for i = m and for all primitive
weights, it follows that the total number (n − m) · Nm of positive weights at
fixed points pm with npm

= m is equal to the total number (m + 1) · Nm+1

of negative weights at fixed points pm+1 with npm+1
= m + 1. It follows that

(m + 1) ·Nm+1 = (n −m) ·Nm = (n −m) ·N0 ·
(
n
m

)
. Therefore, we have that

Nm+1 = N0 ·
(

n
m+1

)
. Hence the claim holds.

Since the Todd genus Todd(M) of M is equal to χy(M)|y=0 and χy(M) =∑n
i=0 χ

i(M) · yi for any y, it follows that Todd(M) = χ0(M) = χ0(M) = N0.
Because N0 > 0 by the first claim, we have that Todd(M) = χ0(M) = N0 > 0.
This proves the first claim of the theorem. Moreover, by Theorem 2.1, we have
that χi(M) = (−1)iNi = (−1)iN0 ·

(
n
i

)
= (−1)iTodd(M) ·

(
n
i

)
for each integer

i such that 0 ≤ i ≤ n. Hence we have that χy(M) =
∑n

i=0 χ
i(M) · yi =∑n

i=0(−1)i ·Todd(M) ·
(
n
i

)
· yi = Todd(M)(1− y)n, since

∑n
i=0(−1)i ·

(
n
i

)
· yi =

(1− y)n.
We have shown that Ni = N0 ·

(
n
i

)
= Todd(M) ·

(
n
i

)
for 0 ≤ i ≤ n. Therefore,

the total number of fixed points is
∑n

i=0Ni =
∑n

i=0N0 ·
(
n
i

)
=
∑n

i=0 Todd(M) ·(
n
i

)
= Todd(M) · 2n. This proves the theorem. �

Proof of Corollary 1.4. We have that A = A1 = {a, b, c}, A2 = {a + b, a +
c, b + c}, and A3 = {a + b + c}. Since a ≤ b ≤ c and a + b 6= c, for any
w ∈ A we have w /∈ A2 and w /∈ A3. This means that the action is primitive.
Therefore, by Theorem 1.1, Todd(M) > 0 and there are Todd(M) · 23 fixed
points. Since Todd(M) is equal to the number of fixed points which have no
negative weights, it follows that the action is Hamiltonian. On the other hand,
since the action is Hamiltonian, there is a unique fixed point which has no
negative weights. This implies that Todd(M) = 1, and the number of fixed
points is Todd(M) · 23 = 8. �
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