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ON ACTION SPECTRUM BUNDLE

YONG SEUNG CHO AND JIN YUE YOON

ABSTRACT. In this paper when (M,w) is a compact weakly exact
symplectic manifold with nonempty boundary satisfying ci1|~,(m) =
0, we construct an action spectrum bundle over the group of Hamil-
tonian diffeomorphisms of the manifold M generated by the time-
dependent Hamiltonian vector fields, whose fibre is nowhere dense
and invariant under symplectic conjugation.

1. Introduction

Let (M,w) be a 2n-dimensional symplectic manifold. Then we can
associate to a smooth Hamiltonian function H : M — R the Hamiltonian
vector field Xy on M, which is defined by w(Xg,-) = —dH(-). The
vector field Xy generates the Hamiltonian flow ¢}, via $¢b = Xgoyl,
¢% = id. A T-periodic solution z(t) of the Hamiltonian equation & =
Xp(z) on M is a solution defined by z(t) = ¢t (x(0)) satisfying the
boundary condition z(T") = z(0) for some T > 0.

Now we consider a smooth time-periodic Hamiltonian function H :

81 x M — R and the time-dependent Hamiltonian differential equation
(1.1) ©(t) = Xpg(t, z(t)).

Throughout we identify S = R/Z. We denote by D the group of Hamil-
tonian diffeomorphisms of M generated by the time-dependent Hamil-
tonian vector fields Xy. Its Lie algebra A is the space of Hamiltonian
vector fields, which is identified with the space of all smooth Hamilton-
ian functions on S! x M satisfying the following normalization condi-
tion, where in the case of a compact manifold M the function is only
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unique up to an additive constant. A function H is said to satisfy a
normalization condition if H is compactly supported when M is open,
Jis H@, z)w™ = 0 for every t € S' when M is closed. For H € A, its
norm is defined by

1 +
IH || :=/ [sup H(t,z) — inf H(t, z)]dt.
0 =z ®

Denote by H the space of smooth time-periodic Hamiltonian functions
H : 81 x M — R which satisfy the normalization condition. Given a
map ¢ € D, its energy E(¢) is defined by

(1.2) E(p) := inf{|H|||¢ = ou, H € H}.

This defines a distinguished bi-invariant metric d, which is called Hofer’s
metric, by d(p,v) := E(p~14). Note that

(1.3) d(p,%) =inf{||H — K||| H generates ¢ and K generates ¢}.

Assume that (M,w) is a compact weakly exact symplectic manifold
with nonempty boundary which satisfies c1lro(m) = 0. The weakly ex-

actness of M means [w]|r, ) = 0, ie., the integral of the symplectic
structure vanishes over every sphere
(1.4) / ww = 0, u:S*— M.

S2

We choose an almost complex structure J on M which is compatible
with w in the sense that

(1.5) 9(&mn) = w(& J(z)n), £ n €T M,

defines a Riemannian metric on M. Then H is the space of all smooth
Hamiltonian functions H : S x M — R, periodic in time, H(t,z) =
H(t+1,z) for t € R and € M having compact support in S* x (M \
OM), and D= {py | H € H}.

For H € H, we denote the set of fixed points of the associated Hamil-
tonian diffeomorphism g by

Fix(pg) ={z € M | pu(z) = z}.
On R?" there exists the solution z(t) = ¢4 (z¢) for 0 < t < 1, 9 €

Fix(pm), of the Hamiltonian equation. It is contractible 1-periodic in
R?" and its action is defined by

1 1
(16)  A(zo, H) = /O %(—J:i:(t),x(t))dt— /0 Ht, 2(8))dt.

But one cannot say that there exist the contractible 1-periodic solutions
of the Hamiltonian equation on any compact symplectic manifold. In
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Section 2 by a relation between Floer homology and Maslov index we
conclude the existence of contractible 1-periodic solutions of the Hamil-
tonian equation under some assumptions. In Section 3 we define the
action of the contractible 1-periodic solution of the Hamiltonian equa-
tion (1.1) and construct the action spectrum bundle whose fibre is a
nowhere dense subset of R, and which is invariant under symplectic
conjugation.

2. Floer homology and Maslov index

Let (M,w) be a compact symplectic manifold with nonempty bound-
ary which satisfies [w]|;,ar) = 0 and c1|r,ar) = 0. Let By denote the
Hilbert manifold of contractible W12 loops z : S! — M. Now to a pe-
riodic function H € H, we associate the action functional ®g : By — R
defined by

2.1) Br(z) = — /D B+ /0 H(t, 2()) dt.

Here D C C denotes the closed unit disc and z : D — M is a smooth
function extending xz, Z|sp = z. Such an extension exists since z
is assumed to be contractible, and it follows from (1.4) that the first
integral on the right hand side of (2.1) does not depend on the choice
of the extension and hence depends only on the loop z. Computing the
derivative of ® g at x € By in the direction of £ € T, 51, we find that

d@p(2)e = [fo{w(d,€) +dH(t z)E}dt
= Jo 9(J(z)2 + VH(, 2),§)dt.
Consequently, d®y(z)¢ = 0 for all £ € T,8; if and only if the loop z
satisfies that

(2.2) Vo (z) = J(2)i + vH(t,z) =0,

and hence ®y(z) is a critical value of ®y if and only if z is a solution
of the equation (1.1). The critical points of ®g are the zeros of the
gradient function, * — w®y(z). Now using a dynamical approach,
we interpret the critical points of ®y as the equilibrium points of the
gradient equation given by

(2.3) & =—v ®y(a).

In order to proceed to familiar Cauchy-Riemann operator, by using
(2.2) we view a solution z of (2.3) as a W' map u : R x 8 — M,
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u(s,t) = u(s,t + 1), p > 2, which solves the following perturbation of a
Cauchy-Riemann equation

(2.4) — + J(u) = + VH(t,u) =0.
By (2.3) we get

E0u(u(s)) = d®u(u(s))(Guls))
9(v®r (u(s)), gruls))
9(V@r(u(s)), — v @ (u(s)))
= —[Iv@a(u(s))|I7 2
which implies that the map s — ®g(u(s)) is decreasing. For simplicity,
we use ||| = |||l ; 72 in the following.

Suppose that (®x(u(s)))ser is bounded in R, where v € WHP(R x
S1, M) satisfies (2.4). Then, using (2.5) we odtain

| Iventusnitas = - " g u(s) < oo,

o0 —o0 48

(2.5)

and hence there exists a sequence {s,} in R with s, — oo such that
v @u(u(sn))| — 0 and || Pa(u(sy))|| — o for some o € R. Set x, =
u(sy). Then its limit, say Zoo, is a critical poiat of @y and a = Py (zeo)
is a critical value of ®y. Thus in order to guarantee the existence
of critical points of @, from now we assume that (Pg(u(s)))ser is
bounded.

DEFINITION 2.1. A periodic solution z(t) of the Hamiltonian equation
is said to be nondegenerate if for ¢ = oy € D

(2.6) det(1 — dy(x(0))) # 0.

We shall assume that all the contractible 1-periodic solutions z(t) of
the equation (1.1) are nondegenerate, and denote by Ppr the set of these
periodic solutions of the Hamiltonian equaticn

Py = {z € Bi|r ~ 0,z(t) = z(t + 1), z satisfies (1.1) and (2.6)}.

This is a finite set since M is compact and the nondegenerate 1-periodic
solutions are isolated in M. We denote by M = M(H,J) the set of
solutions of (2.4) which satisfies the boundedness of (®g(u(s)))ser. In
[1, 3] it was shown that the set M is compact in the topology of uniform
convergence with all derivatives on compact sets, provided that M is
compact and [w]|r,(ary = 0, and that for every bounded orbit u, there
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exists a pair z, y € Py of periodic solutions such that u is a connecting
orbit from z to y, i.e.,

(2.7) lim u(s,t) =x(t), Lm wu(s,t)=y(t).

§——00 s§—+00

Given two l-periodic solutions z, y € Py we denote by M(z,y) =
M(z,y; H,J) the set of bounded orbits which are the solutions of (2.4)
satisfying the asymptotic boundary condition (2.7). Then

M = M(Hv‘]) = Ux,yEPHM(w7y)'

Now we denote by By the Banach manifold of W maps u : R x
S! — M which satisfy the condition (2.7) in the W' sense with p > 2
(see [2]). Consider the bundle 7 — By whose fibre at u € By is the
Banach space of LP-vector fields along u. Let the section s : By — 7
be defined by s(u) = % +J (u)%% + vH(t,u). Then the elements of
M(z,y) are to be found as the zeros of the section s of the Banach
space bundle 7 — B which satisfy the condition (2.7) in the WP
sense. The linearization of s(u) in the direction £ € W1P(u*T' M) along
u € M(zx,y) defines a linear first-order differential operator

Dy : WHP(w*TM) — LP(w*TM)
which is given by
du

(2.8) Dy = s& + J(u) Vi €+ Ve (u) 5 T VeV H(t,u),

where 7 ;, Vvt and /¢ are covariant derivatives with respect to the metric
(1.5).

DEFINITION 2.2. A pair (H,J) with an almost complex structure
J satisfying (1.5) is said to be regular, if every contractible 1-periodic
solution of the equation (1.1) is nondegenerate and D, is onto for every

u€e M.
We introduce two lemmas needed to define the Maslov index on Pg.
LemmA 2.3. ([4]) For any smooth map ¢ : D — M there exists a
trivialization '
D xR 25 *TM : (2,() — ®(2)¢

such that _
J® = ®Jy, ®*w = wy, 9(®¢, B¢ = ¢T¢.

Any two such trivializations are homotopic.
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This lemma shows that if f01" z € Py we choose a smooth function
Z : D — M such that z(e?"®) = z(t), then there exists a unitary
trivialization of Z*T'M and this gives rise to a unitary trivialization

D,(t) = B(e*™) : R*™ — T,yM

of z*T M such that
O, (t+1) = D,(¢).

LEMMA 2.4. ([4]) If the first Chern class c| vanishes over mo(M) then
the homotopy class of ®, is independent of tie choice of the extension
Z:D—- M.

Given a trivialization ®, of z*T M as above we consider the linearized
flow along z(¢) and define the loop

o (t) = By (t) " Ldpt(2(0))®,(0), 0<t <1

which is contained in Sp(2n;R) for every t. We set U = ¥,(t) for
notational conveniency and define the map p : Sp(2n;R) — S! by
p(¥) = det(X (t) + 1Y (t)), where

Y(t) X(@)
is the orthogonal part of ¥ in the polar decomposition ¥ = P(Q. Let
7 : R/Z — Sp(2n;R) be a map which represents a loop of symplectic
matrices U, (#). Then the Maslov index p(H,z) of the loop ¥,(t) is
defined by the degree of the composition po7 : R/Z — S*:

Q= ( X(t) -Y(@®) ) = (‘I’\IJT)—l/Z\IJ € Sp(Qn;R) NO(2n) = U(n)

u(H,z) = deg(porT).
In other words,

W(H,z) = a(1) - a(0)
where o : R — Ris a lift of po 7 :

det(X () +iY (t)) = eZriel),
Define a map pg : Py — Z by ug(z) = u(H,z). In [4], it was shown
that the operator D, which was given by (2.8) is a Fredholm operator
and
IndexD,, = pu(x) — pu(y),

and hence for every regular pair (H,J) and every pair of contractible
1-periodic solutions z, y € Py the space M(z,y) = M(z,y;H,J) is
a manifold whose local dimension near v € M(z,y) is dimM(z,y) =
pa(x) — pa(Y).
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Now we set

C = C(M,H)=&kezChk

Cy = Cp(M,H)= EBalcEPH,ILH(alc):IcZZ<33>'
If z,y € Py satisfy pg(z) — ug(y) = 1, then M(z,y) is a compact one
dimensional manifold. Hence if we denote by M(z,y) the quotient of
M(z,y) by the time s shift, then M(z,y) has only finitely many orbits
u, which implies that M(z,y) has only finitely many components. The
boundary operator 8 : Cy — Ck—1 is defined by the formula

akl' = Z (a’c,y)y,

{y€Pu\pn (y)=k—1}

for x € Py satisfying ug(z) = k, where (0z,y) is the number of compo-
nents of M(z,y) counted modulo 2. In [1] Floer proved that 80 9 = 0,
so that (C,9) defines a chain complex. Its homology

ker 0

HF.(M,H,J) := -~

is called the Floer homology for the regular pair (H,J). In [4] it was
shown that it is independent of the regular pair (H,J), and that there
exists a natural isomorphism between the Floer homology of the pair
(H,J) and the singular homology of M with Zs coeflicients

HF,(M,H,J) = H, x(M,Z3), —n<k<n.

Until now we have found that the index formula for the Fredholm
operator plays an important role in Floer homology and the formula
involves the Maslov index of nondegenerate contractible 1-periodic so-
lutions of the Hamiltonian equation (1.1). Moreover, Floer’s connect-
ing orbits of those solutions can serve as a model for the homology of
the underlying manifold, and hence HF.(M,H,J) # 0, M # 0, and
Py # 0, which imply the existence of contractible 1-periodic solutions
of the Hamiltonian equation.

3. The action spectrum of a Hamiltonian diffeomorphism

Let (M,w) be a compact weakly exact symplectic manifold with
nonempty boundary which satisfies Cilmymy = 0. Recall from Sec-
tion 2 that there exist contractible 1-periodic solutions of Hamiltonian
equation (1.1) provided that every 1-periodic solution is nondegenerate.
Define the action A(zg, H) € R of the contractible 1-periodic solution
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z(t) = ¢t (zo) for 0 < ¢ < 1, g € Fix(pn), @ € By, of the Hamiltonian
equation (1.1) by

(3.1) A(zo, H /ac w—l-/ (¢, z(t))dt,

where D C C denotes the closed unit disc and T : D — M is a smooth
function such that Z|sp = z.

LEMMA 3.1. If H, K € H generate the same map, i.e., oy = @i then
A(x()? H) = A(an K)
for every o € Fix(pn) = Fix(pk).

Proof. We construct, for every x € M and contractible Hamiltonian
flows ¢4 and % generated by H and K, respectively, a contractible
loop z(t) = ¥t(z), for t € [0,2], as follows:

¢
e[l for teo]
2(t) = ¥(=) = { pit(z) for tell,2]
Then z(t) can be extended to a smooth function  : D — M satisfying
Zlsp = z. We set, for z(t) = ¢t(z),

Az) = —/azw+/Htm dt—l—/K —t,z(t))dt.

This map A : M — R is smooth and by differentiation in z we get

o)t=[Zw x§dt+f0dHtm§dt+f1dK tx)gdt

folg z)i,€)dt + [y o(VH(t @), &)dt + [ g(VK (2 —t,),&)dt
Js 9(J(@)z + VH(,x), ¢ Ydt + [Z g(J(x x+vK( —t,x),&)dt
0,

since z(t) = 9!(z) is a solution of the Hamiltonian equation associated
to H(t,z(t)) for t € [0,1] and to K(2 —t,z(t)) for t € [1,2]. This shows
that A : M — R is a constant. Now let Uy, Uy C S! x (M \ M) be
open sets satisfying supp(H) C U; and supp(K) C Uy, respectively, and
let U C S! x (M \ 8M) be a large open set containing U; and U, such
that z(t) = z for t € [0,2] and £ € M \ U. Then for x € M\ U,
A(z) = 0, and hence A = 0. Therefore, if xy € Fix(pn) = Fix(¢k),
then A(xg, H) — A(zg, K) = A(xo) = 0. O

/\\./

This lemma shows that A(zy, H) depends only on the fixed point zg
and the map ¢y, and is independent of the choice of the function H
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generating the map, and hence we can associate with a fixed point zg of
the map ¢ = g € D the action A(zo, ) via

DEFINITION 3.2. The action spectrum of ¢ € D is the set o(p) C R
defined by

o(p) ={A(x, ) | z € Fix(p)}.

PROPOSITION 3.3. The action spectrum o(p) of ¢ € D is nowhere
dense.

Proof. Assume ¢ = @g. We prove the nowhere density of o(p) by
constructing a smooth function on M whose critical values contain o(y)
and then by using Sard’s theorem. As mentioned before, a solution
z(t) = ¢t(zg) € By of the Hamiltonian equation is a critical point of the
action functional ®5. Hence A(zg,y) = ®y(z) with 2(t) = ¢'(z) and
zo € Fix(yp), is a critical value of @y and o(y) is a set of critical values
of ®y. Define a smooth function v : S x M — M by

| ¢l=x) if zeFix(p)
it @) = { x if e M\Fix(yp).
Then for every z € M, the map t — (¢, z) represents a contractible
loop contained in By, and we can define the smooth function ¥ : M — By
by W(z)(t) = ¥(t,z). Consider the composition &z o ¥ : M — R. Since
A(zg, o) = ®g(z) with z(t) = ¢'(zo) and zo € Fix(p), is a critical
value of @y, Pz o U(zg) = @ (pi(zo)) = Az, ) shows that ¥(zg)
and zg € Fix(ip) are critical points of ®5 and ® o ¥, respectively, and
hence A(zg, ) = ®g o ¥(zg) is a critical value of &g o ¥. This map
&y o U is the desired smooth map on M whose critical values contain
o(p). By Sard’s theorem, the set of critical values of ®p o ¥ is nowhere
dense, and hence o () is nowhere dense. ]

Denote by G the group of conformally symplectic diffeomorphisms,
ie., g*fw = ow for all g € G and for some constant a = a(g) € (0,00).
Note that if ¢ = pg € D, then

(3.3) godyog =y,

where Hy(t,z) = H(t, g~ (x)).
The following Proposition 3.4 shows that the action spectrum of ¢ €
D is invariant under symplectic conjugation.
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PROPOSITION 3.4. If o € D and g € G, then

A(g(z), gpg ") = aAlz, p),

and hence o(gpg™') = ao(y), where a is the conformally symplectic
constant of g. In particular, if g is a symplectic diffeomorphism, i.e.,

g'w =w, then o(gpg™") = o(yp).

Proof. Assume that ¢ = ¢y and z € Fix(¢). Then g(z) € Fix(gpg™!)
for g € G since gpg~1(g(z)) = gp(z) = g(x). From (3.2) and (3.3) we
have to show that A(g(z),aH,) = aA(z, H). Set

z(t) = ¢y(x)
y(t) = g(z(t) = goylog ' (9(2)) = phm, (9(z)).

Then, by using the weakly exactness of M (1.4), we find that

A(g(z),aHy) = — [+ [y aly(t,y(t))dt

= — [pTgw+ afl H(t, g ty(t))dt
—a [pTw+a ) H(t,z(t))dt
af— [p & w + [y H(t,z(t))dd]
= «aA(z,H).

O

The constant solution z(t) = ¢*(zg) = =z, for o € Fix(p) with zg €
M\supp(H), ¢ = ¢, of the Hamiltonian equation satisfies A(zg, ) = 0,
and hence 0 € o(y) for every ¢ € D. From this fact and Propositions
3.3 and 3.4 we get the following:

THEOREM 3.5. Let (M,w) be a compact weakly exact symplectic
manifold with nonempty boundary which satisfy cir,( ) = 0. Assume
that every contractible 1-periodic solution of the Hamiltonian equation
is nondegenerate. Then there exists an action spectrum bundle B — D
defined by

B = Ugep{yp} x o(¢),

equipped with the metric induced from (D,d) x R, where d denotes
the Hofer’s metric. Every fibre is a nowhere dense subset of R which
is invariant under symplectic conjugation and the bundle B contains a
trivial continuous section.
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