• Title/Summary/Keyword: symmetric structure

Search Result 554, Processing Time 0.021 seconds

Analysis of Symmetric Coupled Line with Crossbar Embedded Structure for Improved Attenuation Characteristics on the Various Lossy Media (다양한 매질내의 손실특성 개선을 위한 크로스바 구조의 대칭 결합선로에 대한 해석)

  • Kim, Yoon-Suk
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.8
    • /
    • pp.61-67
    • /
    • 2010
  • A characterization procedure for analyzing symmetric coupled MIS(Metal-Insulator-Semiconductor) transmission line is used the same procedure as a general single layer symmetric coupled line with perfect dielectric substrate from the extraction of the characteristic impedance and propagation constant for even- and odd-mode. In this paper, an analysis for a new substrate shielding symmetric coupled MIS structure consisting of grounded crossbar at the interface between Si and SiO2 layer using the Finite-Difference Time-Domain (FDTD) method is presented. In order to reduce the substrate effects on the transmission line characteristics, a shielding structure consisting of grounded crossbar lines over time-domain signal has been examined. Symmetric coupled MIS transmission line parameters for even- and odd-mode are investigated as the functions of frequency, and the extracted distributed frequency-dependent transmission line parameters and corresponding equivalent circuit parameters as well as quality factor for the new MIS crossbar embedded structure are also presented. It is shown that the quality factor of the symmetric coupled transmission line can be improved without significant change in the characteristic impedance and effective dielectric constant.

Effect of P-Emitter Length and Structure on Asymmetric SiC MOSFET Performance (P-Emitter의 길이, 구조가 Asymmetric SiC MOSFET 소자 성능에 미치는 영향)

  • Kim, Dong-Hyeon;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.2
    • /
    • pp.83-87
    • /
    • 2020
  • In this letter, we propose and analyze a new asymmetric structure that can be used for next-generation power semiconductor devices. We compare and analyze the electrical characteristics of the proposed device with respect to those of symmetric devices. The proposed device has a p-emitter on the right side of the cell. The peak electric field is reduced by the shielding effect caused by the p-emitter structure. Consequently, the breakdown voltage is increased. The proposed asymmetric structure has an approximately 100% higher Baliga's figure of merit (~94.22 MW/㎠) than the symmetric structure (~46.93 MW/㎠), and the breakdown voltage of the device increases by approximately 70%.

TWO CHARACTERIZATION THEOREMS FOR HALF LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE KENMOTSU MANIFOLD

  • Jin, Dae Ho
    • The Pure and Applied Mathematics
    • /
    • v.21 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • In this paper, we study the curvature of locally symmetric or semi-symmetric half lightlike submanifolds M of an indefinite Kenmotsu manifold $\bar{M}$, whose structure vector field is tangent to M. After that, we study the existence of the totally geodesic screen distribution of half lightlike submanifolds of indefinite Kenmotsu manifolds with parallel co-screen distribution subject to the conditions: (1) M is locally symmetric, or (2) the lightlike transversal connection is flat.

GENERIC LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE KAEHLER MANIFOLD WITH A QUARTER-SYMMETRIC METRIC CONNECTION

  • Jin, Dae Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.515-531
    • /
    • 2018
  • Jin studied lightlike hypersurfaces of an indefinite Kaehler manifold [6, 8] or indefinite trans-Sasakian manifold [7] with a quarter-symmetric metric connection. Jin also studied generic lightlike submanifolds of an indefinite trans-Sasakian manifold with a quarter-symmetric metric connection [10]. We study generic lightlike submanifolds of an indefinite Kaehler manifold with a quarter-symmetric metric connection.

GENERIC LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE KAEHLER MANIFOLD WITH A NON-METRIC 𝜙-SYMMETRIC CONNECTION

  • Jin, Dae Ho
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.1047-1065
    • /
    • 2017
  • The notion of a non-metric ${\phi}$-symmetric connection on semi-Riemannian manifolds was introduced by Jin [6, 7]. The object of study in this paper is generic lightlike submanifolds of an indefinite Kaehler manifold ${\bar{M}}$ with a non-metric ${\phi}$-symmetric connection. First, we provide several new results for such generic lightlike submanifolds. Next, we investigate generic lightlike submanifolds of an indefinite complex space form ${\bar{M}}(c)$ with a non-metric ${\phi}$-symmetric connection.

Analysis of Symmetric and Periodic Open Boundary Problem by Coupling of FEM and Fourier Series

  • Kim, Young Sun
    • Journal of Magnetics
    • /
    • v.18 no.2
    • /
    • pp.130-134
    • /
    • 2013
  • Most electrical machines like motor, generator and transformer are symmetric in terms of magnetic field distribution and mechanical structure. In order to analyze these problems effectively, many coupling techniques have been introduced. This paper deals with a coupling scheme for open boundary problem of symmetric and periodic structure. It couples an analytical solution of Fourier series expansion with the standard finite element method. The analytical solution is derived for the magnetic field in the outside of the boundary, and the finite element method is for the magnetic field in the inside with source current and magnetic materials. The main advantage of the proposed method is that it retains sparsity and symmetry of system matrix like the standard FEM and it can also be easily applied to symmetric and periodic problems. Also, unknowns of finite elements at the boundary are coupled with Fourier series coefficients. The boundary conditions are used to derive a coupled system equation expressed in matrix form. The proposed algorithm is validated using a test model of a bush bar for the power supply. And the each result is compared with analytical solution respectively.

Symmetric SPN block cipher with Bit Slice involution S-box (비트 슬라이스 대합 S-박스에 의한 대칭 SPN 블록 암호)

  • Cho, Gyeong-Yeon;Song, Hong-Bok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.2
    • /
    • pp.171-179
    • /
    • 2011
  • Feistel and SPN are the two main structures in a block cipher. Feistel is a symmetric structure which has the same structure in encryption and decryption, but SPN is not a symmetric structure. Encrypt round function and decrypt round function in SPN structure have three parts, round key addition and substitution layer with S-box for confusion and permutation layer for defusion. Most SPN structure for example ARIA and AES uses 8 bit S-Box at substitution layer, which is vulnerable to Square attack, Boomerang attack, Impossible differentials cryptanalysis etc. In this paper, we propose a SPN which has a symmetric structure in encryption and decryption. The whole operations of proposed algorithm are composed of the even numbers of N rounds where the first half of them, 1 to N/2 round, applies a right function and the last half of them, (N+1)/2 to N round, employs an inverse function. And a symmetry layer is located in between the right function layer and the inverse function layer. The symmetric layer is composed with a multiple simple bit slice involution S-Boxes. The bit slice involution S-Box symmetric layer increases difficult to attack cipher by Square attack, Boomerang attack, Impossible differentials cryptanalysis etc. The proposed symmetric SPN block cipher with bit slice involution S-Box is believed to construct a safe and efficient cipher in Smart Card and RFID environments where electronic chips are built in.

Design Strength of Non-symmetric Composite Column for Modular Unit Frames (모듈러 유닛 골조용 비대칭 합성기둥의 설계강도)

  • Park, Keum-Sung;Lee, Sang-Sup;Moon, Ji-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.101-109
    • /
    • 2018
  • Modular structural systems have been used increasingly for low- and mid-rise structures such as school and apartment buildings. Studies have recently been conducted on the application of the modular structural system to high-rise buildings. To provide sufficient resistances and economical construction for the high-rise modular structural system, a composite unit modular structure was proposed. In this study, the strength of the non-symmetric composite column for the proposed composite unit modular structure was investigated through a series of tests. The experimental study focused on the effect of the slenderness of the column, eccentricity, and through bars on the strength of such a column. Design equations for the non-symmetric column for a modular unit structure were also proposed. From the results, it was found that the proposed design equations provide reasonable strength prediction of the non-symmetric composite column for the modular unit structure.