• Title/Summary/Keyword: symmetric product

Search Result 95, Processing Time 0.025 seconds

ON ALMOST QUASI RICCI SYMMETRIC MANIFOLDS

  • Kim, Jaeman
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.603-611
    • /
    • 2020
  • The purpose of this note is to introduce a type of Riemannian manifold called an almost quasi Ricci symmetric manifold and investigate the several properties of such a manifold on which some geometric conditions are imposed. And the existence of such a manifold is ensured by a proper example.

THE SYMMETRY OF spin DIRAC SPECTRUMS ON RIEMANNIAN PRODUCT MANIFOLDS

  • HONG, KYUSIK;SUNG, CHANYOUNG
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1037-1049
    • /
    • 2015
  • It is well-known that the spectrum of a $spin^{\mathbb{C}}$ Dirac operator on a closed Riemannian $spin^{\mathbb{C}}$ manifold $M^{2k}$ of dimension 2k for $k{\in}{\mathbb{N}}$ is symmetric. In this article, we prove that over an odd-dimensional Riemannian product $M^{2p}_1{\times}M^{2q+1}_2$ with a product $spin^{\mathbb{C}}$ structure for $p{\geq}1$, $q{\geq}0$, the spectrum of a $spin^{\mathbb{C}}$ Dirac operator given by a product connection is symmetric if and only if either the $spin^{\mathbb{C}}$ Dirac spectrum of $M^{2q+1}_2$ is symmetric or $(e^{{\frac{1}{2}}c_1(L_1)}{\hat{A}}(M_1))[M_1]=0$, where $L_1$ is the associated line bundle for the given $spin^{\mathbb{C}}$ structure of $M_1$.

MIXED VOLUMES OF A CONVEX BODY AND ITS POLAR DUAL

  • Chai, Y. D.;Lee, Young-Soo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.771-778
    • /
    • 1999
  • In this paper, we obtain some geometric inequalities for mixed volumes of a convex body and its polar dual. We also develop a lower bound of the product of quermassintegral of a convex body and its polar dual and give a lower bound for the product of the dual quermassintegral of any index of centrally symmetric convex body and that of its polar dual.

  • PDF

THE RIGIDITY OF MINIMAL SUBMANIFOLDS IN A LOCALLY SYMMETRIC SPACE

  • Cao, Shunjuan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.135-142
    • /
    • 2013
  • In the present paper, we discuss the rigidity phenomenon of closed minimal submanifolds in a locally symmetric Riemannian manifold with pinched sectional curvature. We show that if the sectional curvature of the submanifold is no less than an explicitly given constant, then either the submanifold is totally geodesic, or the ambient space is a sphere and the submanifold is isometric to a product of two spheres or the Veronese surface in $S^4$.

CENTRALLY SYMMETRIC ORTHOGONAL POLYNOMIALS IN TWO VARIABLES

  • Lee, Jeong-Keun
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.3
    • /
    • pp.645-653
    • /
    • 1997
  • We study centrally symmetric orthogonal polynomials satisfying an admissible partial differential equation of the form $$ Au_{xx} + 2Bu_{xy} + Cu_{yy} + Du_x + Eu_y = \lambda_n y, $$ where $A, B, \cdots, E$ are polynomials independent of n and $\lambda_n$ is the eignevalue parameter depending on n. We show that they are either the product of Hermite polymials or the circle polynomials up to a complex linear change of variables. Also we give some properties of them.

  • PDF

LOCALLY SYMMETRIC ALMOST COKÄHLER 5-MANIFOLDS WITH KÄHLERIAN LEAVES

  • Wang, Yaning
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.789-798
    • /
    • 2018
  • Let M be a compact almost $coK{\ddot{a}}hler$ 5-manifold with $K{\ddot{a}}hlerian$ leaves. In this paper, we prove that M is locally symmetric if and only if it is locally isometric to a Riemannian product of a unit circle $S^1$ and a locally symmetric compact $K{\ddot{a}}hler$ 4-manifold.

NONDEGENERATE AFFINE HOMOGENEOUS DOMAIN OVER A GRAPH

  • Choi, Yun-Cherl
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.6
    • /
    • pp.1301-1324
    • /
    • 2006
  • The affine homogeneous hypersurface in ${\mathbb{R}}^{n+1}$, which is a graph of a function $F:{\mathbb{R}}^n{\rightarrow}{\mathbb{R}}$ with |det DdF|=1, corresponds to a complete unimodular left symmetric algebra with a nondegenerate Hessian type inner product. We will investigate the condition for the domain over the homogeneous hypersurface to be homogeneous through an extension of the complete unimodular left symmetric algebra, which is called the graph extension.