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LOCALLY SYMMETRIC ALMOST COKÄHLER

5-MANIFOLDS WITH KÄHLERIAN LEAVES

Yaning Wang

Abstract. Let M be a compact almost coKähler 5-manifold with Kähler-

ian leaves. In this paper, we prove that M is locally symmetric if and
only if it is locally isometric to a Riemannian product of a unit circle S1

and a locally symmetric compact Kähler 4-manifold.

1. Introduction

The study of topology and geometry of (almost) coKähler manifolds dates
back to the 1960s. In early literature, (almost) coKähler manifolds were usu-
ally referred to as (almost) cosymplectic manifolds. For example, in 1967, D.
E. Blair and S. I. Goldberg in [4] obtained that the Betti numbers of any
compact cosymplectic manifold are non-zero. Also, a characterization for a
quasi-Sasakian manifold to be a cosymplectic manifold was given by D. E.
Blair [2]. In 1969, S. I. Goldberg and K. Yano in [8] obtained a condition for
almost cosymplectic structures to be integrable. Later, Z. Olszak in [12] estab-
lished many interesting curvature properties of almost cosymplectic manifolds.
Until recently, H. Li in [10] studied topology construction of coKähler mani-
folds via Kähler mapping tori, showing that coKähler manifolds are really odd
dimensional analog of Kähler manifolds. In some recent papers, many authors
started to adopt the new terminology “(almost) coKähler manifolds” instead
of “(almost) cosymplectic manifolds”. We refer the reader to a recent review
paper [5] and many references therein for more details.

An almost coKähler manifold with Kählerian leaves, introduced by Z. Ol-
szak [13], means that any leaf of the contact distribution of the manifold is
Kählerian. Such manifolds was later studied by P. Dacko and Z. Olszak [7]
who proved that a conforamlly flat almost coKähler manifold of dimension
greater than three with Kählerian leaves is locally flat and coKähler. D. Per-
rone in [15] gave a complete classification of homogeneous almost coKähler
3-manifolds. Motivated by the above results, the present author in [17] studied
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almost coKähler manifolds under condition of local symmetry, generalizing par-
tially Perrone’s results to any odd dimensions. Since coKähler manifolds can
be regarded as a special case of locally conformal almost coKähler manifolds,
then some results of locally symmetric coKähler manifolds can be seen in V.
F. Kirichenko and S. V. Kharitonova [9, Theorem 8]. It is worth pointing out
that a complete classification theorem of locally symmetric coKähler manifolds
with vanishing Bochner curvature tensors was obtained by C. Qu and C. Z.
Ouyang [16, Theorem 2.3].

In the present paper, improving the corresponding result shown in [17, The-
orem 3.1] we obtain some new classification results regarding locally symmetric
five-dimensional almost coKähler manifolds as the following.

Theorem 1.1. If a five-dimensional almost coKähler manifold M with Kähler-
ian leaves is locally symmetric, then one of the following two cases occur.

• M is coKähler and is locally isometric to a Riemannian product of
a real line or a unit circle and a four-dimensional locally symmetric
Kähler manifold.
• M is non-coKähler and is Einstein with negative scalar curvature.

2. Preliminaries

Let M2n+1 be a smooth manifold of dimensional 2n+ 1. An almost contact
metric structure defined on M2n+1 means that there exist a (1, 1)-type tensor
field φ, a global vector field ξ, a 1-form η and a Riemannian metric g such that

φ2 = −id + η ⊗ ξ, η(ξ) = 1,

g(φX, φY ) = g(X,Y )− η(X)η(Y ),
(2.1)

where id denotes the identity endomorphism. We call η an almost contact 1-
form and ξ its dual Reeb vector field. According to (2.1) we have φ(ξ) = 0,
η ◦ φ = 0 and rank(φ) = 2n. On the product manifold M2n+1 × R we define
an almost complex structure J by

J

(
X, f

d

dt

)
=

(
φX − fξ, η(X)

d

dt

)
,

where X denotes a vector field tangent to an almost contact metric manifold
M2n+1, t is the coordinate of R, f is a smooth function defined on the product.

An almost contact structure is said to be normal if the above almost complex
structure J is integrable, i.e., J is a complex structure. According to Blair [3],
the normality of an almost contact structure is expressed by

[φ, φ] = −2dη ⊗ ξ,

where [φ, φ] denotes the Nijenhuis tensor of φ defined by

[φ, φ](X,Y ) = φ2[X,Y ] + [φX, φY ]− φ[φX, Y ]− φ[X,φY ]
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for any vector fields X,Y on M2n+1. The fundamental 2-form Φ on an almost
contact metric manifold M2n+1 is defined by Φ(X,Y ) = g(X,φY ) for any
vector fields X and Y .

Throughout this paper, by an almost coKähler manifold, we mean an almost
contact metric manifold such that both the 1-form η and 2-form Φ are closed
(cf. [5]). In particular, an almost coKähler manifold is said to be a coKähler
manifold if the associated almost contact structure is normal, which is also
equivalent to

(2.2) ∇φ = 0, or equivalently ∇Φ = 0.

We remark that the above (almost) coKähler manifolds are in fact (almost)
cosymplectic manifolds studied in these papers [2–8], Olszak [12–14] and [15–
17]. On an almost coKähler manifold (M2n+1, φ, ξ, η, g), we set h = 1

2Lξφ and
h′ = h ◦ φ. Note that both h and h′ are symmetric operators. The following
formulas can be found in Olszak [12,13] and Perrone [15]:

(2.3) hξ = 0, hφ+ φh = 0, tr(h) = tr(h′) = 0,

(2.4) ∇ξφ = 0, ∇ξ = h′, divξ = 0,

(2.5) ∇ξh = −h2φ− φl,

(2.6) φlφ− l = 2h2,

where l := R(· , ξ)ξ is the Jacobi operator along the Reeb vector field and the
Riemannian curvature tensor R is defined by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

and tr and div denote the trace and divergence operators, respectively.

3. Loclly symmetric almost coKähler 5-manifolds

Let (M2n+1, φ, ξ, η, g) be an almost coKähler manifold. We denote by D
the distribution ker η. It is easily to check that any leaf of the distribution D
admits an almost Kähler structure. Z. Olszak in [13] obtained that the above
almost Kähler structure is Kähler if and only if

(3.1) (∇Xφ)(Y ) = g(X,hY )ξ − η(Y )hX

for any vector fields X,Y . According to [13], if (3.1) holds on an almost
coKähler manifold, then the manifold is said to be with Kählerian leaves. From
(2.2) we see that an almost coKähler manifold is coKähler if and only if it has
Kählerian leaves and h vanishes identically.

In earlier literature, there are few results on locally symmetric almost co-
Kähler manifolds. We now recall these results.

An almost contact metric manifold is called a locally conformal almost co-
Kähler manifold (cf. [14]) if it admits a 1-form ω satisfying

dω = 0, dη = ω ∧ η, dΦ = 2ω ∧ Φ.
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Notice that any almost coKähler manifold is a locally conformal almost co-
Kähler manifold with ω vanishing. Kirichenko and Kharitonova [9, Theorem 8]
proved that any locally symmetric normal locally conformal almost coKähler
manifold is either a coKähler manifold with locally symmetric Kähler compo-
nent or a manifold of constant non-positive curvature.

Qu and Ouyang [16, Theorem 2.3] proved that a locally symmetric coKähler
manifold with vanishing Bochner curvature tensor is either a coKähler manifold
of constant φ-holomorphic sectional curvature or a product of a coKähler man-
ifold of constant φ-holomorphic sectional curvature c and a Kähler manifold of
constant holomorphic sectional curvature −c with c 6= 0.

Perrone [15, Proposition 3.1] proved that an almost coKähler 3-manifold is
locally symmetric if and only if it is locally isometric to a product R×N2(c),
where N2 denotes a Kähler surface of constant Gauss curvature c.

After presenting some useful lemmas, the present author in [17, Theorem
3.1] proved that a locally symmetric almost coKähler manifold of dimension
greater than 3 with Kählerian leaves is either a coKähler manifold with locally
symmetric Kählerian leaves or ξ is an eigenvector field of the Ricci operator
with negative constant eigenvalue.

In this section, we improve the above result and show that the second case
of the result in fact means Einstein for dimension five. Firstly, we need:

Lemma 3.1 ([15]). On any locally symmetric almost coKähler manifold we
have ∇ξh = 0.

Applying the above lemma, the present author in [17] obtained the following
two propositions.

Proposition 3.1 ([17]). Let M2n+1 be a locally symmetric almost coKähler
manifold. Then the multiplicity of the eigenvalue zero of h is at least three and
we have

(3.2) g((∇Xh′)h′Y + (∇Y h2)X,Z) + g((∇Zh′)h′Y,X) = 2g((∇h′Y h
′)X,Z)

for any vector fields X,Y, Z.

Proposition 3.2 ([17]). Let M2n+1 be a locally symmetric almost coKähler
manifold of dimension greater than three with Kählerian leaves. Then, either
M2n+1 is coKähler or it is non-coKähler such that ξ is an eigenvector field of
the Ricci operator with negative constant eigenvalue.

Applying the above two propositions we now present the proof of Theorem
1.1, improving the later case of Proposition 3.2.

Proof of Theorem 1.1. Let M5 be an almost coKähler manifold of dimen-
sion five. If h = 0, from (3.1) we see that φ is parallel along the Levi-Civita
connection and hence by (2.2) it is seen that the manifold is coKähler. Also, it
is well-known that any coKähler manifold is locally isometric to a Riemannian
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product of a real line or a unit circle S1 and a Kähler manifold (see [3]). Then
the proof for the first case follows.

From Proposition 3.1 we next consider the case h 6= 0 on certain open subset,
i.e., the spectrum of h is given by {0, λ, λ} such that the multiplicity of the
eigenvalue zero of h is three. Applying Lemma 3.1, we obtain from (2.5) that
h2φ+ φl = 0 and hence using this in (2.6) we get

(3.3) l = −h2.
In view of (3.3), in what follows we denote by e and v two unit eigenvector fields
of h orthogonal to ξ with corresponding eigenvalues λ > 0 and 0, respectively.
Therefore, φe and φv are also two unit eigenvector fields of h with corresponding
eigenvalues −λ and 0, respectively. According to Proposition 3.2 we have Qξ =
−tr(h2)ξ, where the eigenvalue of ξ of the Ricci operator is a constant (see
[17, p. 746]). It follows directly that λ is a positive constant.

Applying Lemma 3.1, (2.3) and (3.1) we write

∇ξe = a0φe, ∇ξφe = −a0e, ∇ξv = a1φv, ∇ξφv = −a1v,

where the first two terms follow from∇ξe = 1
λh∇ξe and∇ξφe = − 1

λh∇ξφe; the
last two terms follow from h∇ξv = 0 and h∇ξφv = 0 and a0 and a1 are assumed
to be smooth functions. Moreover, from (2.4) we have∇eξ = −λφe and∇φeξ =
−λe. Hence by a direct calculation we have R(e, ξ)ξ = −λ(λ + 2a0)e. On the
other hand, from (3.3) we have R(e, ξ)ξ = −λ2e. Comparing this two relations
we have a0 = 0 because of λ > 0 and the following

(3.4) ∇ξe = 0, ∇ξφe = 0, ∇ξv = a1φv, ∇ξφv = −a1v.
Substituting Y with v in (3.2) gives ∇vh2 = 0. From this, (2.4) and (3.1)

we obtain

(3.5) ∇vξ = 0, ∇ve = a3φe, ∇vφe = −a3e, ∇vv = a2φv, ∇vφv = −a2v,
where the second and third two terms follow from ∇ve = 1

λ2h
2∇ve and ∇vφe =

1
λ2h

2∇vφe; the last two terms follow from h2∇vv = 0 and h2∇vφv = 0 and a2,
a3 are smooth functions.

Similarly, substituting Y with φv in (3.2) gives ∇φvh2 = 0. From this, (2.4)
and (3.1) we obtain
(3.6)
∇φvξ = 0, ∇φve = a5φe, ∇φvφe = −a5e, ∇φvv = a4φv, ∇φvφv = −a4v,

where the second and third two terms follow from ∇φve = 1
λ2h

2∇φve, ∇φvφe =
1
λ2h

2∇φvφe, and the last two terms follow from h2∇φvv = 0 and h2∇φvφv = 0
and a4, a5 are smooth functions.

Putting X = Y = Z = e into (3.2) and using (3.1) give

(3.7) g(∇φee, φe) = g(∇φeφe, e) = 0.

Similarly, putting X = Y = Z = φe into (3.2) and using (3.1) give

(3.8) g(∇eφe, e) = g(∇ee, φe) = 0.
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Putting X = Y = e and Z = v into (3.2) and using (3.1) and (3.5) give

(3.9) g(∇ee, v) = g(∇φeφe, v) = −g(∇φee, φv).

Similarly, putting X = Y = e and Z = φv into (3.2) and using (3.1) and (3.6)
give

(3.10) g(∇ee, φv) = g(∇φeφe, φv) = g(∇φee, v).

In view of the second term of (2.4) we have ∇eξ = −λφe and g(∇ee, ξ) = 0.
Using this and (3.8) we may write

(3.11) ∇ee = a6v + a7φv

and hence from (3.1) we have

(3.12) ∇eφe = λξ + a6φv − a7v,
where a6 and a7 are smooth functions. Similarly, from the second term of (2.4)
we have ∇φeξ = −λe and g(∇φeφe, ξ) = 0. Using this, (3.7), (3.9) and (3.10)
we may write

(3.13) ∇φeφe = a6v + a7φv

and hence from (3.1) we have

(3.14) ∇φee = λξ + a7v − a6φv.
On the other hand, it is known that local symmetry implies Ricci symmetry,

i.e., ∇Q = 0. Then, taking the covariant derivative of Qξ = −tr(h2)ξ = −2λ2ξ
and using the second term of (2.4) we have

Qh′X = −2λ2h′X

for any vector field X. Putting X = e and X = φe respectively in this relation
gives

(3.15) Qe = −2λ2e, Qφe = −2λ2φe.

Taking the covariant derivative of Qe = −2λ2e gives Q∇Xe = −2λ2∇Xe for
any vector field X. Putting X = e in this relation and using (3.11) give

(3.16) a6Qv + a7Qφv = −2λ2a6v − 2λ2a7φv.

Similarly, putting X = φe in previous relation and using (3.14) give

(3.17) a7Qv − a6Qφv = −2λ2a7v + 2λ2a6φv.

It follows from relations (3.16) and (3.17) that either a26 + a27 = 0 identically or
when a26 + a27 6= 0 holds on some open subset we obtain directly

(3.18) Qv = −2λ2v, Qφv = −2λ2φv.

The second case means that M5 is Einstein with Ricci operator Q = −2λ2id,
where λ is a positive constant. Next, we show that the first case can not occur.
Let us now consider the first case a6 = a7 = 0. Applying this in relations (3.11)-
(3.14) we observe that the distribution [e]⊕ [φe]⊕ [ξ] is integrable with totally
geodesic leaves, where we denote by [e], [φe] and [ξ] the eigendistributions of h
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with corresponding eigenvector fields e, φe and ξ, respectively. Moreover, from
(3.5) and (3.6) it is easily seen that the distribution [v]⊕ [φv] is also integrable
with totally geodesic leaves, where [v] and [φv] denote the eigendistributions of
h with corresponding eigenvector fields v and φv, respectively. Therefore, now
we deduce that M5 is locally isometric to a Riemannian product M3 ×M2,
where M3 and M2 are integral manifolds of the distributions [e] ⊕ [φe] ⊕ [ξ]
and [v]⊕ [φv], respectively.

Since M5 is locally symmetric, here we remark that both M2 and M3 are
locally symmetric. Moreover, it follows directly from (3.4) and (3.11)-(3.14)
that

(3.19) R(φe, e)e = λ2φe, R(ξ, e)e = −λ2ξ.
Taking the covariant derivative of the first term of (3.19) along e and using the
second term of (3.19) we obtain

(3.20) (∇eR)(φe, e)e = 2λ3ξ,

where we have used relations and (3.11) and (3.12).
Taking into account the local symmetry condition of totally geodesic sub-

manifold M3 we arrive at a contradiction, λ = 0. In fact, on the integral
manifold of the distribution [e] ⊕ [φe] ⊕ [ξ] there exists a three-dimensional
almost coKähler structure which is locally symmetric. Therefore, applying
Perrone [15, Proposition 3.1], that is, any locally symmetric three-dimensional
almost coKähler manifold must be coKähler, we still obtain λ = 0 and arrive
at again a contradiction. This complete the proof. �

It is well-known that a homogeneous Einstein manifold can not be compact
if its the scalar curvature is negative (see Besse [1, Theorem 7.56]). Thus, from
Theorem 1.1 we give our main result as the following.

Theorem 3.1. A five-dimensional compact, simple connected almost coKähler
manifold with Kählerian leaves is locally symmetric if and only if it is coKähler
and is locally isometric to a Riemannian product of a unit circle S1 and a
four-dimensional locally symmetric compact Kähler manifold.

Next we show some examples of five-dimensional locally symmetric or Ein-
stein almost coKähler manifolds.

Example 3.1. From Oguro and Sekigawaa [11] we know that the product
H3×R admits a strictly almost Kähler structure. Therefore, we state that the
product R×(H3×R) admits a locally symmetric non-coKähler almost coKähler
structure. However, the structure has no Kählerian leaves and is not Einstein.

Example 3.2. Let G be a connected, simply connected Lie group with Lie
algebra g = {e1, e2, e3, e4, e5} whose structure equations are given by

de1 =

√
3

2
e2 ∧ e5 +

1

2
e1 ∧ e4, de2 =

√
3

2
e1 ∧ e5 +

1

2
e2 ∧ e4,

de3 = e1 ∧ e2 + e3 ∧ e4, de4 = 0, de5 = 0,
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where {e1, e2, e3, e4, e5} is the dual basis for g∗. Let g be the left invariant
metric on G given as the following

g = (e1)2 + (e2)2 + (e3)2 + (e4)2 + (e5)2.

Conti and Fernández [6] proved that G admits an Einstein non-coKähler almost
coKähler structure (η := e5,Φ := −e1∧e2−e3∧e4, g). Here we remark that the
manifold has Kählerian leaves and but is not locally symmetric. This assertion
follows from the following computations.

From the structure equation we obtain the Lie bracket of the Lie group.

[e1, e2] = −e3, [e1, e3] = 0, [e1, e4] = −1

2
e1,

[e1, e5] = −
√

3

2
e2, [e2, e3] = 0, [e2, e4] = −1

2
e2,

[e2, e5] = −
√

3

2
e1, [e3, e4] = −e3, [e3, e5] = 0, [e4, e5] = 0.

By a direct calculation and using the well-known Koszual formula we have

∇e1e2 = −1

2
e3 +

√
3

2
e5, ∇e1e3 =

1

2
e2, ∇e1e4 = −1

2
e1,

∇e1e5 = −
√

3

2
e2, ∇e2e3 = −1

2
e1, ∇e2e4 = −1

2
e2,

∇e2e5 = −
√

3

2
e1, ∇e3e4 = −1

2
e3, ∇e3e5 = 0, ∇e4e5 = 0,

∇e1e1 =
1

2
e4, ∇e2e2 =

1

2
e4, ∇e3e3 =

1

2
e4, ∇e4e4 = 0, ∇e5e5 = 0.

It follows directly from the above relations that

R(e4, e2)e3 =
1

2
e1, R(e1, e3, e3) = 0,

R(e1, e5)e3 = −
√

3

4
e1, R(e1, e2)e3 = 0, R(e1, e2)e2 = −1

4
e1.

Applying the above relations we have (∇e1R)(e1, e2)e3 = 1
4e1 and this means

that the manifold is not locally symmetric. Moreover, from the above relations
we obtain

h′e2 = −
√

3

2
e1, h

′e1 = −
√

3

2
e2, h

′e3 = 0, h′e4 = 0,

where {e1, e2 = φe1, e3, e4 = φe3, ξ = e5} is a local orthonormal φ-basis of
the tangent space at each point of the manifold. One can check that relation
(3.1) holds for any vector fields X,Y and this means that the structure has
Kählerian leaves.

For more examples of almost coKähler manifolds with Kählerian leaves we
refer the reader to Olszak [13, Section 3].
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Before closing this paper, we now propose a nature question deserving fur-
ther exploration.

Question. Is there a locally symmetric, Einstein, non-coKähler almost co-
Kähler 5-manifold with Kählerian leaves?

Acknowledgement. This work was supported by the National Natural Sci-
ence Foundation of China (No. 11526080), Key Scientific Research Program
in Universities of Henan Province (No. 16A110004), the Research Foundation
for the Doctoral Program of Henan Normal University (No. qd14145) and the
Youth Science Foundation of Henan Normal University (No. 2014QK01).

References

[1] A. L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3),

10, Springer-Verlag, Berlin, 1987.
[2] D. E. Blair, The theory of quasi-Sasakian structures, J. Differential Geometry 1 (1967),

331–345.

[3] , Riemannian geometry of contact and symplectic manifolds, second edition,

Progress in Mathematics, 203, Birkhäuser Boston, Inc., Boston, MA, 2010.
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