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PSEUDO-HERMITIAN 2-TYPE LEGENDRE SURFACES IN

THE UNIT SPHERE S5

Ji-Eun Lee

Abstract. In this paper, we show that it is Chen surfaces that non-

minimal pseudo-Hermitian mass-symmetric 2-type Legendre surfaces in
S5. Moreover, we show that pseudo-Hermitian mass-symmetric 2-type

Legendre surfaces in S5 are the locally product of two pseudo-Hermitian
circles.

1. Introduction

Let Mn be an n-dimensional submanifold of Euclidean space Em+1. Denote
by ∆ the Laplacian of Mn acting on smooth functions on Mn. This Laplacian
can be extended in a natural way to Em+1-valued smooth functions on Mn. A
submanifold Mn of Em+1 is said to be of k-type if the position vector x of Mn

in Em+1 admits the following spectral decomposition

x = x0 + x1 + · · ·+ xk,

where x0 ∈ Em+1 is a fixed vector and xi (i = 1, . . . , k) are non-constant
Em+1-valued smooth maps on Mn such that

∆xi = λixi i = 1, . . . , k and λ1 < · · · < λk, λi ∈ R.
The study of submanifolds of finite type was introduced by B. Y. Chen in [3].

A compact submanifold Mn of a hypersphere Sm of Em+1 is said to be mass-
symmetric in Sm if the center of mass x0 of Mn in Em+1 is exactly the center of
Sm in Em+1. Mass-symmetric 2-type submanifolds of a hypersphere can be re-
garded as the “simplest” submanifolds of Em+1 next to minimal submanifolds.
B. Y. Chen ([3]) found that mass-symmetric spherical 2-type submanifolds have
some special properties. For instances, every mass-symmetric spherical 2-type
submanifold has constant mean curvature. Thus, he classified 2-type surfaces
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of a hypersphere that a compact surface of a hypersphere S3 in E4 is the prod-
uct of two plane circles with different radii if and only if it is mass-symmetric
and of 2-type.

C. Baikoussis and D. E. Blair ([1]) classified integral surfaces of the unit
sphere S5(1) which are mass-symmetric and of 2-type. They proved that a
mass-symmetric 2-type integral surface of S5(1) is the product of a plane circle
and a helix of order 4 or the product of two circles.

In this paper, we study Legendre submanifolds Mn of the unit sphere S2n+1

in E2n+2. In Section 3, we consider the Takahashi’s Theorem (Lemma 3.1)
for pseudo-Hermitian geometry. Thus, we define the finite type for pseudo-
Hermitian geometry and prove that Legendre submanifold Mn is of pseudo-
Hermitian 1-type if and only if it is a minimal submanifold of S2n+1.

In Section 4, we find that it is Chen surface that non-minimal pseudo-
Hermitian mass-symmetric 2-type Legendre surfaces in S5. Moreover, we clas-
sify that pseudo-Hermitian mass-symmetric 2-type Legendre surfaces in S5 is
the locally product of two pseudo-Hermitian circles.

2. Preliminaries

Let Cn+1 be the complex Euclidean (n+ 1)-space with the standard almost
complex structure J . Denoted by S2n+1 the unit sphere with the standard
induced metric g in Cn+1.

We give S2n+1 the usual contact structure. Define a tangent vector field ξ,
a 1-form η and a (1, 1)-type tensor field ϕ on S2n+1 satisfying

ξ = Jx, η(X) = g(X, ξ), and ϕ = s ◦ J,

where s denotes the orthogonal projection from TpC
n+1 on TpS

2n+1, p ∈ S2n+1,
and the position vector field x of S2n+1 is a unit normal vector field of S2n+1

in Cn+1.
Then we obtain for tangent vector fields X and Y on S2n+1

(1) η(X) = g(X, ξ), dη(X,Y ) = g(X,ϕY ), ϕ2X = −X + η(X)ξ.

Thus it satisfies

[ϕ,ϕ] + 2dη ⊗ ξ = 0,

where [ϕ,ϕ] is the Nijenhuis torsion of ϕ. These formulas imply that S2n+1 is
a Sasakian manifold.

On the other hand, for a given contact form we have two compatible struc-
tures: One is a Riemannian structure (or metric) and the other is a pseudo-
Hermitian structure (or almost CR-structure). In pseudo-Hermitian geometry
(CR-geometry) we use the Tanaka-Webster connection as a canonical connec-
tion instead of the Levi-Civita connection ([2]).

Now, we review the Tanaka-Webster connection ([6], [8]) on a contact strong-
ly pseudo-convex CR-manifold N = (N ; η, L) with the associated contact
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Riemannian structure (η, ξ, ϕ, g). The Tanaka-Webster connection ∇̂ for a
Sasakian manifold is

∇̂XY = ∇XY + η(X)ϕY + η(Y )ϕX − g(ϕX, Y )ξ,(2)

where ∇ is the Levi-Civita connection. The Tanaka-Webster connection ∇̂ has
the torsion

T̂ (X,Y ) = 2g(X,ϕY )ξ

for all vector fields X,Y on N . Furthermore, it was proved in ([7]) that:

Proposition 2.1. The Tanaka-Webster connection ∇̂ on a contact Riemann-
ian manifold N = (N2n+1; η, ϕ, ξ, g) with the associated (integrable) CR-struct-
ure is the unique linear connection satisfying the following conditions:

(i) ∇̂η = 0, ∇̂ξ = 0,

(ii) ∇̂g = 0, ∇̂ϕ = 0,

(iii-1) T̂ (X,Y ) = −η([X,Y ])ξ, X, Y ∈ kerη,

(iii-2) T̂ (ξ, ϕY ) = −ϕT̂ (ξ, Y ), Y ∈ kerη.

We define the pseudo-Hermitian curvature tensor (or Tanaka-Webster cur-

vature tensor) R̂ on a contact Riemannian manifold equipped with the associ-

ated CR-structure and Tanaka-Webster connection ∇̂ by

(3) R̂(X,Y )Z = ∇̂X(∇̂Y Z)− ∇̂Y (∇̂XZ)− ∇̂[X,Y ]Z

for all vector fields X,Y, Z in N . In [4] he studied the relation between pseudo-
Hermitian geometry and Riemannian geometry. Indeed, for Sasakian space
forms N2n+1(ε) the holomorphic sectional curvature for ∇̂ is ε̂ = ε+ 3. Thus,
we see that the unit sphere S2n+1(1) has constant pseudo-holomorphic sectional
curvature ε̂ = 4. We will denote by S2n+1 the unit sphere.

Now, we recall the properties on Legendre submanifolds in Sasakian space
forms for the Tanaka-Webster connection ∇̂.

Let N2n+1 be a contact Riemannian manifold and f : Mm −→ N2n+1 be an
isometric immersion of a Riemannian manifold Mn. Then we have the basic
formulas for ∇̂:

(4) ∇̂fXY = ∇̂oXY + σ̂(X,Y ) and ∇̂fXV = −ŜVX + D̂XV,

where X,Y ∈ TMm, V ∈ T⊥Mm, σ̂, Ŝ and D̂ are the second fundamental
form, the shape operator and the normal connection with respect to ∇̂. The
connection ∇̂o is the connection on M induced from ∇̂. The first formula
is called the Gauss formula and the second formula is called the Weingarten
formula with respect to Tanaka-Webster connection.

If η restricted to Mm vanishes, then a Riemannian manifold Mm, isomet-
rically immersed in contact Riemannian manifold N2n+1, is called an integral
submanifold. In particular if m = n, it is called a Legendre submanifold.
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Let Mn be a Legendre submanifold of a Sasakian manifold N2n+1 and let ei
(i = 1, . . . , n) be an orthonormal frame along Mn such that {ei} are tangent
to Mn, ϕe1 = en+1, . . . , ϕen = e2n, ξ = e2n+1. From (2), assuming

A(X,Y ) = η(X)ϕY + η(Y )ϕX − g(ϕX, Y )ξ,

then we see that

(5) A(X,Y ) = 0

for X,Y ∈ TM , and then we find that σ̂ = σ. This implies that ∇̂o coincides
with the Levi-Civita connection ∇o of Mn. Moreover, we have

(6) SϕYX = −ϕσ(X,Y ) = SϕXY, Sξ = 0.

Now we suppose that the ambient space N = N2n+1(ε̂) is a Sasakian space

form. Since ϕ is parallel for Tanaka-Webster connection ∇̂, we get

D̂XϕY = ϕ∇̂oXY, SϕYX = −ϕσ(X,Y ).

Then by using a straightforward computation the equations of Gauss and Co-
dazzi of Legendre submanifolds for Tanaka-Webster connection are given re-
spectively by:

h(Ro(X,Y )Z,W ) = g(R̂(X,Y )Z,W ) + h([SϕZ , SϕW ]X,Y ),(7)

(∇̂Xσ)(Y,Z) = (∇̂Y σ)(X,Z).(8)

3. Laplace operator in pseudo-Hermitian geometry

In this section, we find the Takahashi’s Theorem (Lemma 3.1) for pseudo-
Hermitian geometry. Thus, we define the finite type for pseudo-Hermitian
geometry and compute ∆̂H.

Now instead of the Levi-Civita connection ∇, using the canonical affine
connection of contact Riemannian manifolds, the Tanaka-Webster connection
∇̂, we define the Laplace operator ∆̂ on Mn in E2n+2,

(9) ∆̂ = −
n∑
i=1

(
∇̂ei∇̂ei − ∇̂∇̂o

ei
ei

)
,

where e1, . . . , en is a local orthonormal frame field and ∇̂o the induced connec-
tions on Mn.

Let x : Mn → S2n+1 ⊂ E2n+2 be an isometric immersion of an n-dimensional
Legendre submanifold Mn into S2n+1 in E2n+2. Let e1, . . . , en be an orthonor-
mal local frame fields such that ∇̂oeiej = ∇oeiej = 0 in Mn. Then from (5) we

find that σ̂ = σ and Ĥ = H. Thus we get

∆̂x = −
n∑
i=1

∇̂ei∇̂eix = −
n∑
i=1

∇̂eiei

= −
n∑
i=1

σ(ei, ei) = −nH.
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Hence we have:

Lemma 3.1. Let x : Mn → S2n+1 ⊂ E2n+2 be an n-dimensional Legendre
submanifold into the unit sphere S2n+1 of Euclidean space E2n+2 with respect
to the Tanaka-Webster connection ∇̂. If Mn has an orthonormal local frame
fields e1, . . . , en such that ∇̂oeiej = 0, then

(10) ∆̂x = −nH,

where x is the position vector and H mean curvature vector field (for the Levi-
Civita connection ∇).

The allied mean curvature vector field a(H) is defined by

a(H) =

2n+1∑
r=n+2

(trSHSer )er.

If a(H) vanishes identically on Mn, it is called (according to [3]) a-submanifold
and when n = 2 it is called a Chen surface.

By direct computation, we have ([5])

∆̂H = tr(∇SH) + ∆̂D̂H + (trS2
ϕe1)H + a(H),

where tr(∇SH) =
∑n
i=1(SDei

Hei + (∇eiSH)ei).

Now, assume that Mn is a Legendre submanifold of the unit sphere S2n+1

of E2n+2. Let H,σ, S, and D̂ denote the mean curvature vector, the second
fundamental form, the Weingarten maps and the normal connection of Mn in
E2n+2 for the Tanaka-Webster connection ∇̂, respectively. Denote by H ′, σ′, S′

and D̂′ the corresponding for Mn in S2n+1. Then we have

(11) H = H ′ − x, D̂x = 0.

We put H ′ =
trSϕe1

n ϕe1. Then we get

∆̂D̂H = ∆̂D̂′
H ′,

a(H) = a′(H ′)− n | H |2 x,
trS2

ϕe1H = (trS2
ϕe1 + n)H ′.

Hence we obtain (cf. [3], p. 273):

Lemma 3.2. Let Mn be a Legendre submanifold of the unit sphere S2n+1 in
E2n+2 for the Tanaka-Webster connection ∇̂. Then we have

(12) ∆̂H = tr(∇SH) + ∆̂D̂′
H ′ + (trS2

ϕe1 + n)H ′ + a′(H ′)− n | H |2 x,

where a′(H ′) is the allied mean curvature vector field of Mn in S2n+1.

A submanifold Mm of contact Riemannian manifold N2n+1 in E2n+2 is said
to be of pseudo-Hermitian k-type if the position vector x of Mm in contact
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Riemannian manifold N2n+1 in E2n+2 for the Tanaka-Webster connection ∇̂
admits the following spectral decomposition

x = x0 + x1 + · · ·+ xk,

where x0 ∈ E2n+2 is fixed vector and xi (i = 1, . . . , k) are non-constant E2m+2-
valued smooth maps on Mm such that

∆̂xi = λixi, i = 1, . . . , k and λ1 < · · · < λk, λi ∈ R.
Since H = H ′ − x for a Legendre submanifold Mn of the unit sphere S2n+1

in E2n+2, using (10) we have

∆̂x = −nH = −n(H ′ − x) = −nH ′ + nx.

Hence we obtain:

Proposition 3.3. Let Mn be a Legendre submanifold of the unit sphere S2n+1

in E2n+2. Then Mn is of pseudo-Hermitian 1-type if and only if it is a minimal
submanifold of S2n+1.

4. Pseudo-Hermitian 2-type Legendre surface

We consider the hypersphere S5 ⊂ C3 ∼= E6 centered at the origin. Assume
that

(13) x : M → S5

is a mass-symmetric 2-type immersion of a Legendre surface M into S5 for the
Tanaka-Webster connection ∇̂.

Denote by ∇̂ the Tanaka-Webster connection of E6 and by ∇̂o, ∇̂′ the in-
duced connections on M and S5, respectively. Let H,σ, S, and D̂ denote the
mean curvature vector, the second fundamental form, the Weingarten maps
and the normal connection of M in E6, respectively. Denote by H ′, σ′, S′ and
D̂′ the corresponding for M in S5. Then we have H = H ′ − x.

Since M is pseudo-Hermitian 2-type and mass-symmetric, the position vec-
tor x of M with respect to the origin of E6 can be written as follows:

(14) x = xp + xq, ∆̂xp = λpxp, ∆̂xq = λqxq,

where xp, xq are non-constant E6-valued maps on M.
Let ei(i = 1, . . . , 5) be an orthonormal frame field along M2 such that e1, e2

are tangent to M2, ϕe1 = e3, ϕe2 = e4, ξ = e5. We denote by {ω̂i}, i = 1, . . . , 5

the dual frame field of the frame {ei} for the Tanaka-Webster connection ∇̂.
Then we have

∇̂ei = Σ6
i=1ω̂

j
i ej .

From (2) we get

D̂XV = DXV + η(V )ϕX − g(ϕX, V )ξ,

where X ∈ TM and V ∈ TM⊥. Using the above equation, we have

ω̂4
3 = ω4

3 , ω̂j5 = ωj5 = 0, ω̂3
5(ei) = ω3

5(ei) + g(ei, e1) = 0,(15)
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ω̂4
5(ei) = ω4

5(ei) + g(ei, e2) = 0, ω̂k6 = ωk6 = 0,

where i = 1, 2, j = 1, 2, 5, 6, and k = 3, 4, 5, 6.
On the other hand, from (10) we have ∆̂x = −2H. By using (14) we have

(16) ∆̂H =
trSϕe1

2
(λp + λq)ϕe1 − (λp + λq −

λpλq
2

)x.

From (12) and (16) we have that trSϕe1 is a constant. When trSϕe1 = 0, M
is a minimal surface of S5 and pseudo-Hermitian 1-type. We may assume that
trSϕe1 = constant 6= 0.

By direct computation, we get

∆̂D̂′
H ′ =

2∑
i=1

(D̂′∇ei
eiH

′ − D̂′eiD̂
′
eiH

′) =
trSϕe1

2
∆̂D̂ϕe1(17)

=
trSϕe1

2
[| D̂ϕe1 |2 ϕe1 − (tr∇ω4

3)ϕe2],

where

(18) | D̂ϕe1 |= Σ2
i=1 | D̂eiϕe1 |= Σ2

i=1ω
4
3(ei)

and

(19) tr∇ω4
3 = Σ2

i=1(∇eiω4
3)(ei) = Σ2

i=1(eiω
4
3(ei)− ω4

3(∇eiei)).

Since

a′(H ′) =
trSϕe1

2
(trSϕe1Sϕe2)ϕe2 and

tr(∇SH) =
trSϕe1

2

2∑
i=1

((∇eiSϕe1)ei + ω4
3(ei)Sϕe2ei),

from (12), (16) and (17), therefore we have the following equations:

2∑
i=1

((∇eiSϕe1(ei)) + ω4
3(ei)Sϕe2ei) = 0,(20)

| D̂ϕe1 |2 +trS2
ϕe1 = λp + λq − 2,(21)

tr∇ω4
3 − trSϕe1Sϕe2 = 0.(22)

Since trSϕe1 is a constant, we get

0 = grad trSϕe1 =

2∑
i=1

((∇̂eiSϕe1)(ei)− SD̂ei
ϕe1

ei)

=

2∑
i=1

((∇eiSϕe1)(ei)− ω4
3(ei)Sϕe2ei).
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From this and (20) we have

(23)

2∑
i=1

(∇eiSϕe1)(ei) = 0,

and

(24)

2∑
i=1

ω4
3(ei)Sϕe2ei = 0.

Let M be a Legendre surface in Sasakian space forms S5. Then since
Sϕe1e2 = Sϕe2e1 (by [2]) and trSϕe2 = 0, if

(25) Sϕe1 =

[
a b
b c

]
, then Sϕe2 =

[
b c
c −b

]
,

where a, b, c are functions on M. By the similar way with ([1]), we have detSϕe2
6= 0. Since detSϕe2 6= 0, using (24) we obtain ω4

3 = 0.
From (18) and (21) we get trSϕe1 is a constant. From (19) and (22) we

get trSϕe1Sϕe2 = 0. Applying this to (25) we find that b = 0, a = constant,
c = constant. Therefore we obtain:

Proposition 4.1. Let M be a non-minimal pseudo-Hermitian mass-symmetric
2-type Legendre surface in the unit sphere S5 in E6. Then M is a Chen surface.

Lemma 4.2. Let M be a pseudo-Hermitian mass-symmetric 2-type Legendre
surface in the unit sphere S5 in E6. Then M is flat.

Proof. Let M be a Legendre surface in a Sasakian manifold S5 for pseudo-
Hermitian geometry. Then using (4) we get

∇̂ejϕei = ∇̂′ejϕei = (∇̂′ejϕ)ei + ϕ(∇̂′ejei)(26)

= ϕ(∇oejei + σ′(ei, ej)).

On the other hand,

(27) ∇̂ejϕei = −Sϕeiej + D̂ejϕei.

Using Sϕe1e2 = Sϕe2e1 we have

ϕ(σ′(ei, ej)) = ϕ(g(Sϕe1ei, ej)ϕe1 + g(Sϕe2ei, ej)ϕe2)

= −g(Sϕeie1, ej)e1 − g(Sϕeie2, ej)e2(28)

= −Sϕeiej , i, j = 1, 2.

From (26), (27) and (28), we get D̂ejϕei = ϕ(∇oejei). Thus ω4
3 = 0 implies

that D̂ejϕei = 0. Hence we have ϕ(∇oejei) = 0. Using (1) obtain ∇oejei = 0. �

Since M is flat, K̂(e1, e2) = 1 + ac− c2 = 0. Hence from c 6= 0 we have

(29) a =
c2 − 1

c
.
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Definition. If γ is a curve in a contact Riemannian manifold N , parametrized
by arc-length s, we say that γ is a Frenet curve of osculating order r when
there exist orthornormal vector fields E1, E2, . . . , Er, along γ such that

γ̇ = E1, ∇̂γ̇E1 = κ̂1E2, ∇̂γ̇E2 = −κ̂1E1 + κ̂2E3, . . . ,

∇̂γ̇Er−1 = −κ̂r−2Er−2 + κ̂r−1Er, ∇̂γ̇Er = −κ̂r−1Er−1,
where κ̂1, κ̂2, . . . , κ̂r−1 are positive C∞ functions of s. κ̂j is called the j-th
pseudo-Hermitian curvature of γ. A geodesic is a Frenet curve of osculating
order 1, a pseudo-Hermitian circle is a Frenet curve of osculating order 2 with κ̂1
a constant; a pseudo-Hermitian helix of order r is a Frenet curve of osculating
order r, such that κ̂1, κ̂2, . . . , κ̂r−1 are constants.

Theorem 4.3. Let M be a pseudo-Hermitian mass-symmetric 2-type Legendre
surface in the unit sphere S5 in E6. Then M is locally product of two pseudo-
Hermitian circles.

Proof. For the second fundamental form σ of M in E6, we have

σ(e1, e1) = aϕe1 − x,
σ(e1, e2) = cϕe2,

σ(e2, e2) = cϕe1 − x,
for a constant a, c 6= 0. From this and the definition (2) of the Tanaka-Webster

connection ∇̂ we get

∇̂e1e1 = aϕe1 − x, ∇̂e1e2 = cϕe2, ∇̂e1ϕe1 = −ae1,(30)

∇̂e1ϕe2 = −ce2, ∇̂e1ξ = 0, ∇̂e1x = e1

and

∇̂e2e1 = cϕe2, ∇̂e2e2 = cϕe1 − x, ∇̂e2ϕe1 = −ce2,(31)

∇̂e2ϕe2 = −ce1, ∇̂e2ξ = 0, ∇̂e2x = e2.

Let e1 = E1, from (30) we have

∇̂E1E1 = ∇̄E1E1 = aϕe1 − x = κ1E2,

where E2 = aϕe1−x√
a2+1

, κ1 =
√
a2 + 1.

∇̂E1
E2 =

a√
a2 + 1

∇̂e1ϕe1 −
1√

a2 + 1
∇̂e1x = −

√
a2 + 1e1 = −k1E1.

Thus κ̂2 = 0 and e1-curve is a pseudo-Hermitian circle.
Now we put e2 = E1. From (31) we have

∇̂E1
E1 = ∇̄E1

E1 = cϕe1 − x = κ1E2,

where E2 = cϕe1−x√
c2+1

, κ1 =
√
c2 + 1.

∇̂E1
E2 =

c√
c2 + 1

∇̂e2ϕe1 −
1√
c2 + 1

∇̂e2x = −
√
c2 + 1e2 = −k1E1.
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Hence κ̂2 = 0 and e2-curve is a pseudo-Hermitian circle. �
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