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PSEUDO-HERMITIAN 2-TYPE LEGENDRE SURFACES IN
THE UNIT SPHERE S5

JI-EUN LEE

ABSTRACT. In this paper, we show that it is Chen surfaces that non-
minimal pseudo-Hermitian mass-symmetric 2-type Legendre surfaces in
S5. Moreover, we show that pseudo-Hermitian mass-symmetric 2-type
Legendre surfaces in S° are the locally product of two pseudo-Hermitian
circles.

1. Introduction

Let M™ be an n-dimensional submanifold of Euclidean space E™*1. Denote
by A the Laplacian of M™ acting on smooth functions on M™. This Laplacian
can be extended in a natural way to E™*!-valued smooth functions on M". A
submanifold M™ of E™*! is said to be of k-type if the position vector x of M™
in E™*+! admits the following spectral decomposition

T =x0+T1+" -+ Tk,

where o € E™T! is a fixed vector and z; (i = 1,...,k) are non-constant
E™*1_valued smooth maps on M" such that

Ax; = Nz i=1,...,k and A <--- <A, N ER.

The study of submanifolds of finite type was introduced by B. Y. Chen in [3].

A compact submanifold M™ of a hypersphere S™ of E™*! is said to be mass-
symmetric in S™ if the center of mass ¢ of M™ in E™*1 is exactly the center of
S™ in E™+1. Mass-symmetric 2-type submanifolds of a hypersphere can be re-
garded as the “simplest” submanifolds of E™*! next to minimal submanifolds.
B. Y. Chen ([3]) found that mass-symmetric spherical 2-type submanifolds have
some special properties. For instances, every mass-symmetric spherical 2-type
submanifold has constant mean curvature. Thus, he classified 2-type surfaces

Received December 21, 2018; Revised May 16, 2019; Accepted August 2, 2019.

2010 Mathematics Subject Classification. Primary 53B25, 53C25.

Key words and phrases. Legendre surface, Sasakian space forms, pseudo-Hermitian struc-
ture, 2-type, mass-symmetric.

The author was supported by Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and
Technology (2019R111A1A01043457).

(©2020 Korean Mathematical Society



252 J.-E. LEE

of a hypersphere that a compact surface of a hypersphere S in E* is the prod-
uct of two plane circles with different radii if and only if it is mass-symmetric
and of 2-type.

C. Baikoussis and D. E. Blair ([1]) classified integral surfaces of the unit
sphere S°(1) which are mass-symmetric and of 2-type. They proved that a
mass-symmetric 2-type integral surface of S°(1) is the product of a plane circle
and a helix of order 4 or the product of two circles.

In this paper, we study Legendre submanifolds M™ of the unit sphere $27+1!
in E?"*2 In Section 3, we consider the Takahashi’s Theorem (Lemma 3.1)
for pseudo-Hermitian geometry. Thus, we define the finite type for pseudo-
Hermitian geometry and prove that Legendre submanifold M™ is of pseudo-
Hermitian 1-type if and only if it is a minimal submanifold of S?7*1.

In Section 4, we find that it is Chen surface that non-minimal pseudo-
Hermitian mass-symmetric 2-type Legendre surfaces in S®. Moreover, we clas-
sify that pseudo-Hermitian mass-symmetric 2-type Legendre surfaces in S° is
the locally product of two pseudo-Hermitian circles.

2. Preliminaries

Let C"*! be the complex Euclidean (n + 1)-space with the standard almost
complex structure J. Denoted by S2"*! the unit sphere with the standard
induced metric g in C**+1,

We give S?"+1 the usual contact structure. Define a tangent vector field &,
a 1-form 7 and a (1, 1)-type tensor field ¢ on S?"*! satisfying

E=Jz, n(X)=g(X,§), and @=s0/,

where s denotes the orthogonal projection from 7,C"*! on T},5?" 1, p € 527+,
and the position vector field = of S?**1! is a unit normal vector field of S27+!
in C"*1.

Then we obtain for tangent vector fields X and Y on §?7+!

(1) n(X)=g(X,), dnX,Y)=g(X,9Y), ¢©*’X=-X+n(X)E,
Thus it satisfies
[p, 0] +2dn @& =0,

where [, o] is the Nijenhuis torsion of ¢. These formulas imply that S$2"*+1 is
a Sasakian manifold.

On the other hand, for a given contact form we have two compatible struc-
tures: One is a Riemannian structure (or metric) and the other is a pseudo-
Hermitian structure (or almost CR-structure). In pseudo-Hermitian geometry
(CR~geometry) we use the Tanaka- Webster connection as a canonical connec-
tion instead of the Levi-Civita connection ([2]).

Now, we review the Tanaka- Webster connection ([6], [8]) on a contact strong-
ly pseudo-convex CR-manifold N = (N;n,L) with the associated contact
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Riemannian structure (1,&,¢,g). The Tanaka-Webster connection V for a
Sasakian manifold is

(2) VxY = VxY +9(X)eY +n(Y)pX — g(pX,Y)E,

where V is the Levi-Civita connection. The Tanaka-Webster connection V has
the torsion

T(X,Y) =29(X, pY)¢
for all vector fields X, Y on N. Furthermore, it was proved in ([7]) that:

Proposition 2.1. The Tanaka- Webster connection V on a contact Riemann-
ian manifold N = (N2"*1:in, 0, &, g) with the associated (integrable) CR-struct-
ure is the unique linear connection satisfying the following conditions:

(ii) Vg =0, @cp =0,

(iti-1) T(X,Y) = —n([X,Y))¢, X, Y € kern,

(iii-2) T(€,Y) = —T(£,Y), Y € kern.

We define the pseudo-Hermitian curvature tensor (or Tanaka- Webster cur-
vature tensor) R on a contact Riemannian manifold equipped with the associ-
ated CR-structure and Tanaka-Webster connection V by

(3) R(X,Y)Z=Vx(VyZ) - Vy(VxZ) - Vixy)Z

for all vector fields X, Y, Z in N. In [4] he studied the relation between pseudo-
Hermitian geometry and Riemannian geometry. Indeed, for Sasakian space
forms N2"*1(¢) the holomorphic sectional curvature for V is é = e 4+ 3. Thus,
we see that the unit sphere S2"*1(1) has constant pseudo-holomorphic sectional
curvature é = 4. We will denote by $2"*+! the unit sphere.

Now, we recall the properties on Legendre submanifolds in Sasakian space
forms for the Tanaka-Webster connection V.

Let N2"*! be a contact Riemannian manifold and f : M™ — N?"*! be an
isometric immersion of a Riemannian manifold M™. Then we have the basic
formulas for V:

(4) VLY = V&Y +6(X,Y) and VLV =—-SyX + DxV,

where X, Y € TM™, V. € T*M™, &, S and D are the second fundamental
form, the shape operator and the normal connection with respect to V. The
connection V° is the connection on M induced from V. The first formula
is called the Gauss formula and the second formula is called the Weingarten
formula with respect to Tanaka-Webster connection.

If n restricted to M™ vanishes, then a Riemannian manifold M™, isomet-
rically immersed in contact Riemannian manifold N2"*1 is called an integral
submanifold. In particular if m = n, it is called a Legendre submanifold.
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Let M™ be a Legendre submanifold of a Sasakian manifold N2"*! and let e;
(¢ =1,...,n) be an orthonormal frame along M"™ such that {e;} are tangent
to M™, pe1 = eni1,y...,pen = €, & = eapy1. From (2), assuming
AXY) =n(X)pY +n(Y)eX — g(pX, Y)E,
then we see that
(5) AX,)Y)=0

for X,Y € TM, and then we find that & = o. This implies that V° coincides
with the Levi-Civita connection V° of M™. Moreover, we have

(6) Swa = —(IDO'(X7Y) = SchK Sg =0.

Now we suppose that the ambient space N = N2"T1(¢) is a Sasakian space

form. Since ¢ is parallel for Tanaka-Webster connection V, we get
DxoY = V%Y,  SyyX =—po(X,Y).

Then by using a straightforward computation the equations of Gauss and Co-
dazzi of Legendre submanifolds for Tanaka-Webster connection are given re-
spectively by:

(7) ME(X,Y)Z,W) = g(R(X,Y)Z,W) + h([Spz, Sow] X, Y),
(8) (Vxo)(Y,2) = (Vyo)(X, Z).

3. Laplace operator in pseudo-Hermitian geometry

In this section, we find the Takahashi’s Theorem (Lemma 3.1) for pseudo-
Hermitian geometry. Thus, we define the finite type for pseudo-Hermitian
geometry and compute AH.

Now instead of the Levi-Civita connection V, using the canonical affine
connection of contact Riemannian manifolds, the Tanaka-Webster connection
V, we define the Laplace operator A on M™ in E?"+2,

n
9) A=-%" (Veivei ~ V. ) :
i=1
where ey, ..., e, is a local orthonormal frame field and Ve the induced connec-
tions on M™.
Let x : M™ — §27+1 ¢ E27+2 be an isometric immersion of an n-dimensional
Legendre submanifold M™ into $?7+! in E?"*2, Let ey,...,e, be an orthonor-
mal local frame fields such that @g ej = V2e;=0in M". Then from (5) we

find that 6 = o and H = H. Thus we get

Ae= 3 VoV =-3 Vee,
3 =1
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Hence we have:

Lemma 3.1. Let x : M"™ — S*t1 C E>*2 be an n-dimensional Legendre
submanifold into the unit sphere S?"*1 of Buclidean space E*"*2 with respect
to the Tanaka-Webster connection V. If M™ has an orthonormal local frame
fields eq, ..., e, such that @giej =0, then

(10) Az = —nH,

where x is the position vector and H mean curvature vector field (for the Levi-
Civita connection V).

The allied mean curvature vector field a(H) is defined by

2n+1
a(H) = Y (trSuS.,)er.
r=n+2
If o( H) vanishes identically on M™, it is called (according to [3]) a-submanifold
and when n = 2 it is called a Chen surface.
By direct computation, we have ([5])

AH =tr(VSy) + APH + (trS2, )H + a(H),

pel
where tr(VSy) = Z;L:l(SDeiHei + (Ve,Su)ei).

Now, assume that M™ is a Legendre submanifold of the unit sphere $27+1!
of E?"*2 Let H,o,S, and D denote the mean curvature vector, the second
fundamental form, the Weingarten maps and the normal connection of M™ in
E27+2 for the Tanaka-Webster connection V, respectively. Denote by H’, o”, S’
and D’ the corresponding for M"™ in $2"*1. Then we have

(11) H=H'—=z Dzx=0.

We put H' = %g@el. Then we get

APH = AP I,
a(H)=d (H)—n|H|*x,
trS, H = (trS2,, +n)H'
Hence we obtain (cf. [3], p. 273):

Lemma 3.2. Let M™ be a Legendre submanifold of the unit sphere S?"t1 in
E?"*2 for the Tanaka- Webster connection V. Then we have

(12)  AH =tr(VSy) + AP H' + (trS2, +n)H' +d (H')—n| H |?

we1

where a'(H') is the allied mean curvature vector field of M™ in S?"+1.

A submanifold M™ of contact Riemannian manifold N2"*! in E?"*+2 is said
to be of pseudo-Hermitian k-type if the position vector x of M™ in contact
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Riemannian manifold N2"t! in E27+2 for the Tanaka-Webster connection V
admits the following spectral decomposition

T =gx0+ a1+ +ap,

where zg € E?"*2 is fixed vector and x; (i = 1, ..., k) are non-constant F?"+2-
valued smooth maps on M" such that

Av; =Nz, i=1,...,k and M <---<MXg;, X\ €R.

Since H = H' — x for a Legendre submanifold M" of the unit sphere S27+1
in E?"*2 using (10) we have

Agg = —nH = —n(H/ — ;E) = —nH’ + nx.
Hence we obtain:

Proposition 3.3. Let M" be a Legendre submanifold of the unit sphere S?"+1
in E?"+2. Then M™ is of pseudo-Hermitian 1-type if and only if it is a minimal
submanifold of S?"+1.

4. Pseudo-Hermitian 2-type Legendre surface

We consider the hypersphere S° C C2 =2 ES centered at the origin. Assume
that

(13) r:M— S°

is a mass-symmetric 2-type immersion of a Legendre surface M into S° for the
Tanaka-Webster connection V.

Denote by V the Tanaka-Webster connection of ES and by Ve, V' the in-
duced connections on M and S®, respectively. Let H, o, S, and D denote the
mean curvature vector, the second fundamental form, the Weingarten maps
and the normal connection of M in ES, respectively. Denote by H', o', S’ and
D' the corresponding for M in S°. Then we have H = H' — x.

Since M is pseudo-Hermitian 2-type and mass-symmetric, the position vec-
tor & of M with respect to the origin of E® can be written as follows:

(14) T =a,+ 1y Axy, =Nz, Ar,= 1,
where x,,, r4 are non-constant ES-valued maps on M.

Let e;(i = 1,...,5) be an orthonormal frame field along M? such that ey, eo
are tangent to M?, pe; = ez, pea = e4,€ = e5. We denote by {@;},i=1,...,5
the dual frame field of the frame {e;} for the Tanaka-Webster connection V.
Then we have R '

Vei = Z?:lcf}gej.
From (2) we get
DxV =DxV +n(V)pX — g(¢X, V),
where X € TM and V € TM+*. Using the above equation, we have

(15) O =wy, Gl=wl=0, &%) =wiles)+gleser) =0,
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L:}é(@l) :Wé(ei)‘i‘g(ei,@z) :07 L:}g = Wg :07

where i = 1,2, ) =1,2,5,6, and k = 3,4,5,6.
On the other hand, from (10) we have Az = —2H. By using (14) we have

trSee, - ApAq o
—t 5 .

From (12) and (16) we have that trSy., is a constant. When trS,., =0, M
is a minimal surface of S® and pseudo-Hermitian 1-type. We may assume that
trSye, = constant # 0.

By direct computation, we get

(16) AH = (>‘p + >‘q)9061 - (Ap + Aq

2
iy . - 1S per 1 1
(17) AP'H' =S (D, o H' = DL DL H') = 2 AP ey
i=1
trS e A
= ; L[| Dgey |* per — (trVuws)pes],
where
(18) | Dgey |= %2, | De,per |= X7 wi(e:)
and
(19)  trVid = S, (Vo) (eo) = S (exwd(er) — wd(Teen).
Since
trS e
a(H') = %(WS’WISWQM@Q and
trS 2
tr(VSuy) = % D (Ve Sper)ei + wi(e:)Spesei),
i=1

from (12), (16) and (17), therefore we have the following equations:
2

(20) Z((veisgom (1)) + wg(ei)sgom e;) =0,
i=1
(21) | Dpey |> +trS2, =Xy + g — 2,
(22) trVw; — trSpe, Spe, = 0.
Since trS,e, is a constant, we get

2
0=grad trSpe, = Z((@ei&pel)(ei) — Sf)e.welei)

i=1

=D (VeSpe ) (es) = wi(ei)Spesci).
i=1
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From this and (20) we have
2

(23) Z(Vh S‘Pel)(ei) =0,

i=1
and
2
(24) Z (,uf,‘j(ei)Swj2 e; = 0.
i=1

Let M be a Legendre surface in Sasakian space forms S°. Then since
Sper€2 = Spe,e1 (by [2]) and trS,e, = 0, if

a b

(25) S = {b c} . then Spe, = E _Cb] ,

where a, b, ¢ are functions on M. By the similar way with ([1]), we have det S,
# 0. Since det Sy, # 0, using (24) we obtain wj = 0.

From (18) and (21) we get trSy, is a constant. From (19) and (22) we
get trSype, Spe, = 0. Applying this to (25) we find that b = 0, a = constant,
¢ = constant. Therefore we obtain:

Proposition 4.1. Let M be a non-minimal pseudo-Hermitian mass-symmetric
2-type Legendre surface in the unit sphere S° in ES. Then M is a Chen surface.

Lemma 4.2. Let M be a pseudo-Hermitian mass-symmetric 2-type Legendre
surface in the unit sphere S° in ES. Then M is flat.

Proof. Let M be a Legendre surface in a Sasakian manifold S° for pseudo-
Hermitian geometry. Then using (4) we get

(26) Ve pei = V. pe; = (V. @)ei + o(V, i)
= (Ve e+ 0 (e e5)).

On the other hand,
(27) @ej ve; = —Sge. €5 + Dej we;.

Using Sge, €2 = Sye,e1 We have

@(0'(eire5)) = ©(g(Spe, €ir €)per + g(Speyeis €5)pea)
(28) = —g(Spe,1,€5)e1 — g(Spe, €2, €5)e2
= =S¢5, %,J=1,2.

From (26), (27) and (28), we get D, pe; = @(V2 ;). Thus wy = 0 implies

that D, pe; = 0. Hence we have p(V¢ e;) = 0. Using (1) obtain V¢ e; = 0. O

Since M is flat, K(el, e2) =1+ ac — ¢ = 0. Hence from ¢ # 0 we have

-1
29 = .
(29) a= "
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Definition. If 7y is a curve in a contact Riemannian manifold N, parametrized
by arc-length s, we say that 7 is a Frenet curve of osculating order r when
there exist orthornormal vector fields Fy, Eo, ..., E,, along v such that

¥ = By, V5B = k1 By, V5B = =1 By + kB, ...,
@"yErfl = —hr oF, o+ ’%’l‘flET7 @'\/Er = _’%rflErfla

where A1, Ro,...,R.—1 are positive C° functions of s. &; is called the j-th
pseudo-Hermitian curvature of 7. A geodesic is a Frenet curve of osculating
order 1, a pseudo-Hermitian circle is a Frenet curve of osculating order 2 with &
a constant; a pseudo-Hermitian helix of order r is a Frenet curve of osculating
order r, such that &1, ks, ...,k-_1 are constants.

Theorem 4.3. Let M be a pseudo-Hermitian mass-symmetric 2-type Legendre
surface in the unit sphere S° in ES. Then M is locally product of two pseudo-
Hermitian circles.

Proof. For the second fundamental form o of M in E°®, we have

olel,e1) = ape; — x,

o(er1, ea) = cpes,

o(es, €2) = cper — x,
for a constant a, ¢ # 0. From this and the definition (2) of the Tanaka-Webster
connection V we get

(30) Ve, €1 = ape; — , Ve, eg = cpes, Ve, pe1 = —aeq,
@elgoeg = —cea, @elf =0, @elx =€

and

(31) @6261 = cpey, @6262 = cpe; — T, @eggoel = —cea,

Ve, pe0 = —ceq, @825 =0, @ETT = es.
Let e; = Eq, from (30) we have
@ElEl = Vg, El = ape; — 1 = k1 s,
where Ey = a\“/o%”,m =+vaZ+1.

- a - 1 -
- * - — a2 - _
Vi By = = Ve, pe1 = Ve, o = a’ 4+ ley kiE;.

Thus #2 = 0 and ej-curve is a pseudo-Hermitian circle.
Now we put e; = E;. From (31) we have

@ElEl = Vg, E| = cpe; —x = k1 B,
where Fy = Cﬁ%, k1 =V + 1.

. c - 1 A
—_— [ —— 2 —
VElEQ— C2+1ve2(p61 C2+1v5293— V2 +leg = —k1Ey.
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nce Ky = 0 and es-curve is a pseudo-Hermitian circle. O
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