Commun. Korean Math. Soc. 35 (2020), No. 1, pp. 251-260

 $\begin{array}{l} \rm https://doi.org/10.4134/CKMS.c180530 \\ \rm pISSN:~1225\text{-}1763~/~eISSN:~2234\text{-}3024 \end{array}$

PSEUDO-HERMITIAN 2-TYPE LEGENDRE SURFACES IN THE UNIT SPHERE S^5

JI-EUN LEE

ABSTRACT. In this paper, we show that it is Chen surfaces that non-minimal pseudo-Hermitian mass-symmetric 2-type Legendre surfaces in S^5 . Moreover, we show that pseudo-Hermitian mass-symmetric 2-type Legendre surfaces in S^5 are the locally product of two pseudo-Hermitian circles.

1. Introduction

Let M^n be an n-dimensional submanifold of Euclidean space E^{m+1} . Denote by Δ the Laplacian of M^n acting on smooth functions on M^n . This Laplacian can be extended in a natural way to E^{m+1} -valued smooth functions on M^n . A submanifold M^n of E^{m+1} is said to be of k-type if the position vector x of M^n in E^{m+1} admits the following spectral decomposition

$$x = x_0 + x_1 + \dots + x_k,$$

where $x_0 \in E^{m+1}$ is a fixed vector and x_i (i = 1, ..., k) are non-constant E^{m+1} -valued smooth maps on M^n such that

$$\Delta x_i = \lambda_i x_i \quad i = 1, \dots, k \quad \text{and} \quad \lambda_1 < \dots < \lambda_k, \quad \lambda_i \in \mathbb{R}.$$

The study of submanifolds of finite type was introduced by B. Y. Chen in [3]. A compact submanifold M^n of a hypersphere S^m of E^{m+1} is said to be mass-symmetric in S^m if the center of mass x_0 of M^n in E^{m+1} is exactly the center of S^m in E^{m+1} . Mass-symmetric 2-type submanifolds of a hypersphere can be regarded as the "simplest" submanifolds of E^{m+1} next to minimal submanifolds. B. Y. Chen ([3]) found that mass-symmetric spherical 2-type submanifolds have some special properties. For instances, every mass-symmetric spherical 2-type submanifold has constant mean curvature. Thus, he classified 2-type surfaces

Received December 21, 2018; Revised May 16, 2019; Accepted August 2, 2019. 2010 Mathematics Subject Classification. Primary 53B25, 53C25.

 $Key\ words\ and\ phrases.$ Legendre surface, Sasakian space forms, pseudo-Hermitian structure, 2-type, mass-symmetric.

The author was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2019R111A1A01043457).

of a hypersphere that a compact surface of a hypersphere S^3 in E^4 is the product of two plane circles with different radii if and only if it is mass-symmetric and of 2-type.

C. Baikoussis and D. E. Blair ([1]) classified integral surfaces of the unit sphere $S^5(1)$ which are mass-symmetric and of 2-type. They proved that a mass-symmetric 2-type integral surface of $S^5(1)$ is the product of a plane circle and a helix of order 4 or the product of two circles.

In this paper, we study Legendre submanifolds M^n of the unit sphere S^{2n+1} in E^{2n+2} . In Section 3, we consider the Takahashi's Theorem (Lemma 3.1) for pseudo-Hermitian geometry. Thus, we define the finite type for pseudo-Hermitian geometry and prove that Legendre submanifold M^n is of pseudo-Hermitian 1-type if and only if it is a minimal submanifold of S^{2n+1} .

In Section 4, we find that it is Chen surface that non-minimal pseudo-Hermitian mass-symmetric 2-type Legendre surfaces in S^5 . Moreover, we classify that pseudo-Hermitian mass-symmetric 2-type Legendre surfaces in S^5 is the locally product of two pseudo-Hermitian circles.

2. Preliminaries

Let \mathbb{C}^{n+1} be the complex Euclidean (n+1)-space with the standard almost complex structure J. Denoted by S^{2n+1} the unit sphere with the standard induced metric g in \mathbb{C}^{n+1} .

We give S^{2n+1} the usual contact structure. Define a tangent vector field ξ , a 1-form η and a (1, 1)-type tensor field φ on S^{2n+1} satisfying

$$\xi = Jx$$
, $\eta(X) = g(X, \xi)$, and $\varphi = s \circ J$,

where s denotes the orthogonal projection from T_pC^{n+1} on T_pS^{2n+1} , $p \in S^{2n+1}$, and the position vector field x of S^{2n+1} is a unit normal vector field of S^{2n+1} in \mathbb{C}^{n+1} .

Then we obtain for tangent vector fields X and Y on S^{2n+1}

(1)
$$\eta(X) = g(X, \xi), \quad d\eta(X, Y) = g(X, \varphi Y), \quad \varphi^2 X = -X + \eta(X)\xi.$$

Thus it satisfies

$$[\varphi, \varphi] + 2d\eta \otimes \xi = 0,$$

where $[\varphi, \varphi]$ is the Nijenhuis torsion of φ . These formulas imply that S^{2n+1} is a Sasakian manifold.

On the other hand, for a given contact form we have two compatible structures: One is a Riemannian structure (or metric) and the other is a pseudo-Hermitian structure (or almost CR-structure). In pseudo-Hermitian geometry (CR-geometry) we use the *Tanaka-Webster connection* as a canonical connection instead of the Levi-Civita connection ([2]).

Now, we review the Tanaka-Webster connection ([6], [8]) on a contact strongly pseudo-convex CR-manifold $N=(N;\eta,L)$ with the associated contact

Riemannian structure (η, ξ, φ, g) . The Tanaka-Webster connection $\hat{\nabla}$ for a Sasakian manifold is

(2)
$$\hat{\nabla}_X Y = \nabla_X Y + \eta(X)\varphi Y + \eta(Y)\varphi X - g(\varphi X, Y)\xi,$$

where ∇ is the Levi-Civita connection. The Tanaka-Webster connection $\hat{\nabla}$ has the torsion

$$\hat{T}(X,Y) = 2g(X,\varphi Y)\xi$$

for all vector fields X, Y on N. Furthermore, it was proved in ([7]) that:

Proposition 2.1. The Tanaka-Webster connection $\hat{\nabla}$ on a contact Riemannian manifold $N = (N^{2n+1}; \eta, \varphi, \xi, g)$ with the associated (integrable) CR-structure is the unique linear connection satisfying the following conditions:

- (i) $\hat{\nabla}\eta = 0, \ \hat{\nabla}\xi = 0,$
- (ii) $\hat{\nabla}g = 0$, $\hat{\nabla}\varphi = 0$,
- (iii-1) $\hat{T}(X,Y) = -\eta([X,Y])\xi$, $X, Y \in ker\eta$,
- (iii-2) $\hat{T}(\xi, \varphi Y) = -\varphi \hat{T}(\xi, Y), Y \in ker\eta.$

We define the pseudo-Hermitian curvature tensor (or Tanaka-Webster curvature tensor) \hat{R} on a contact Riemannian manifold equipped with the associated CR-structure and Tanaka-Webster connection $\hat{\nabla}$ by

(3)
$$\hat{R}(X,Y)Z = \hat{\nabla}_X(\hat{\nabla}_Y Z) - \hat{\nabla}_Y(\hat{\nabla}_X Z) - \hat{\nabla}_{[X,Y]} Z$$

for all vector fields X, Y, Z in N. In [4] he studied the relation between pseudo-Hermitian geometry and Riemannian geometry. Indeed, for Sasakian space forms $N^{2n+1}(\epsilon)$ the holomorphic sectional curvature for $\hat{\nabla}$ is $\hat{\epsilon} = \epsilon + 3$. Thus, we see that the unit sphere $S^{2n+1}(1)$ has constant pseudo-holomorphic sectional curvature $\hat{\epsilon} = 4$. We will denote by S^{2n+1} the unit sphere.

Now, we recall the properties on Legendre submanifolds in Sasakian space forms for the Tanaka-Webster connection $\hat{\nabla}$.

Let N^{2n+1} be a contact Riemannian manifold and $f: M^m \longrightarrow N^{2n+1}$ be an isometric immersion of a Riemannian manifold M^n . Then we have the basic formulas for ∇ :

(4)
$$\hat{\nabla}_X^f Y = \hat{\nabla}_X^o Y + \hat{\sigma}(X, Y) \quad \text{and} \quad \hat{\nabla}_X^f V = -\hat{S}_V X + \hat{D}_X V,$$

where $X,Y \in TM^m$, $V \in T^{\perp}M^m$, $\hat{\sigma}$, \hat{S} and \hat{D} are the second fundamental form, the shape operator and the normal connection with respect to $\hat{\nabla}$. The connection $\hat{\nabla}^o$ is the connection on M induced from $\hat{\nabla}$. The first formula is called the Gauss formula and the second formula is called the Weingarten formula with respect to Tanaka-Webster connection.

If η restricted to M^m vanishes, then a Riemannian manifold M^m , isometrically immersed in contact Riemannian manifold N^{2n+1} , is called an *integral* submanifold. In particular if m = n, it is called a Legendre submanifold.

Let M^n be a Legendre submanifold of a Sasakian manifold N^{2n+1} and let e_i (i = 1, ..., n) be an orthonormal frame along M^n such that $\{e_i\}$ are tangent to M^n , $\varphi e_1 = e_{n+1}, ..., \varphi e_n = e_{2n}, \xi = e_{2n+1}$. From (2), assuming

$$A(X,Y) = \eta(X)\varphi Y + \eta(Y)\varphi X - g(\varphi X, Y)\xi,$$

then we see that

$$(5) A(X,Y) = 0$$

for $X, Y \in TM$, and then we find that $\hat{\sigma} = \sigma$. This implies that $\hat{\nabla}^o$ coincides with the Levi-Civita connection ∇^o of M^n . Moreover, we have

(6)
$$S_{\varphi Y}X = -\varphi \sigma(X, Y) = S_{\varphi X}Y, \quad S_{\xi} = 0.$$

Now we suppose that the ambient space $N = N^{2n+1}(\hat{\epsilon})$ is a Sasakian space form. Since φ is parallel for Tanaka-Webster connection $\hat{\nabla}$, we get

$$\hat{D}_X \varphi Y = \varphi \hat{\nabla}_X^o Y, \qquad S_{\varphi Y} X = -\varphi \sigma(X, Y).$$

Then by using a straightforward computation the equations of Gauss and Codazzi of Legendre submanifolds for Tanaka-Webster connection are given respectively by:

(7)
$$h(R^{o}(X,Y)Z,W) = g(\hat{R}(X,Y)Z,W) + h([S_{\varphi Z}, S_{\varphi W}]X,Y),$$

(8)
$$(\hat{\nabla}_X \sigma)(Y, Z) = (\hat{\nabla}_Y \sigma)(X, Z).$$

3. Laplace operator in pseudo-Hermitian geometry

In this section, we find the Takahashi's Theorem (Lemma 3.1) for pseudo-Hermitian geometry. Thus, we define the finite type for pseudo-Hermitian geometry and compute $\hat{\Delta}H$.

Now instead of the Levi-Civita connection ∇ , using the canonical affine connection of contact Riemannian manifolds, the Tanaka-Webster connection $\hat{\nabla}$, we define the Laplace operator $\hat{\Delta}$ on M^n in E^{2n+2} ,

(9)
$$\hat{\Delta} = -\sum_{i=1}^{n} \left(\hat{\nabla}_{e_i} \hat{\nabla}_{e_i} - \hat{\nabla}_{\hat{\nabla}_{e_i}^o e_i} \right),$$

where e_1, \ldots, e_n is a local orthonormal frame field and $\hat{\nabla}^o$ the induced connections on M^n .

Let $x: M^n \to S^{2n+1} \subset E^{2n+2}$ be an isometric immersion of an n-dimensional Legendre submanifold M^n into S^{2n+1} in E^{2n+2} . Let e_1, \ldots, e_n be an orthonormal local frame fields such that $\hat{\nabla}_{e_i}^o e_j = \nabla_{e_i}^o e_j = 0$ in M^n . Then from (5) we find that $\hat{\sigma} = \sigma$ and $\hat{H} = H$. Thus we get

$$\hat{\Delta}x = -\sum_{i=1}^{n} \hat{\nabla}_{e_i} \hat{\nabla}_{e_i} x = -\sum_{i=1}^{n} \hat{\nabla}_{e_i} e_i$$
$$= -\sum_{i=1}^{n} \sigma(e_i, e_i) = -nH.$$

Hence we have:

Lemma 3.1. Let $x: M^n \to S^{2n+1} \subset E^{2n+2}$ be an n-dimensional Legendre submanifold into the unit sphere S^{2n+1} of Euclidean space E^{2n+2} with respect to the Tanaka-Webster connection $\hat{\nabla}$. If M^n has an orthonormal local frame fields e_1, \ldots, e_n such that $\hat{\nabla}_{e_i}^o e_j = 0$, then

$$\hat{\Delta}x = -nH,$$

where x is the position vector and H mean curvature vector field (for the Levi-Civita connection ∇).

The allied mean curvature vector field a(H) is defined by

$$a(H) = \sum_{r=n+2}^{2n+1} (trS_H S_{e_r}) e_r.$$

If a(H) vanishes identically on M^n , it is called (according to [3]) a-submanifold and when n=2 it is called a *Chen surface*.

By direct computation, we have ([5])

$$\hat{\Delta}H = tr(\nabla S_H) + \hat{\Delta}^{\hat{D}}H + (trS_{\omega e_1}^2)H + a(H),$$

where $tr(\nabla S_H) = \sum_{i=1}^n (S_{D_{e_i}H}e_i + (\nabla_{e_i}S_H)e_i).$

Now, assume that M^n is a Legendre submanifold of the unit sphere S^{2n+1} of E^{2n+2} . Let H, σ, S , and \hat{D} denote the mean curvature vector, the second fundamental form, the Weingarten maps and the normal connection of M^n in E^{2n+2} for the Tanaka-Webster connection $\hat{\nabla}$, respectively. Denote by H', σ', S' and \hat{D}' the corresponding for M^n in S^{2n+1} . Then we have

$$(11) H = H' - x, \quad \hat{D}x = 0.$$

We put $H' = \frac{trS_{\varphi e_1}}{n} \varphi e_1$. Then we get

$$\hat{\Delta}^{\hat{D}}H = \hat{\Delta}^{\hat{D}'}H',$$

$$a(H) = a'(H') - n \mid H \mid^{2} x,$$

$$trS_{\varphi e_{1}}^{2}H = (trS_{\varphi e_{1}}^{2} + n)H'.$$

Hence we obtain (cf. [3], p. 273):

Lemma 3.2. Let M^n be a Legendre submanifold of the unit sphere S^{2n+1} in E^{2n+2} for the Tanaka-Webster connection $\hat{\nabla}$. Then we have

(12)
$$\hat{\Delta}H = tr(\nabla S_H) + \hat{\Delta}^{\hat{D}'}H' + (trS_{\varphi e_1}^2 + n)H' + a'(H') - n \mid H \mid^2 x,$$

where a'(H') is the allied mean curvature vector field of M^n in S^{2n+1} .

A submanifold M^m of contact Riemannian manifold N^{2n+1} in E^{2n+2} is said to be of pseudo-Hermitian k-type if the position vector x of M^m in contact

Riemannian manifold N^{2n+1} in E^{2n+2} for the Tanaka-Webster connection $\hat{\nabla}$ admits the following spectral decomposition

$$x = x_0 + x_1 + \dots + x_k,$$

where $x_0 \in E^{2n+2}$ is fixed vector and x_i (i = 1, ..., k) are non-constant E^{2m+2} -valued smooth maps on M^m such that

$$\hat{\Delta}x_i = \lambda_i x_i, \quad i = 1, \dots, k \quad \text{and} \quad \lambda_1 < \dots < \lambda_k, \quad \lambda_i \in R.$$

Since H = H' - x for a Legendre submanifold M^n of the unit sphere S^{2n+1} in E^{2n+2} , using (10) we have

$$\hat{\Delta}x = -nH = -n(H' - x) = -nH' + nx.$$

Hence we obtain:

Proposition 3.3. Let M^n be a Legendre submanifold of the unit sphere S^{2n+1} in E^{2n+2} . Then M^n is of pseudo-Hermitian 1-type if and only if it is a minimal submanifold of S^{2n+1} .

4. Pseudo-Hermitian 2-type Legendre surface

We consider the hypersphere $S^5\subset C^3\cong E^6$ centered at the origin. Assume that

$$(13) x: M \to S^5$$

is a mass-symmetric 2-type immersion of a Legendre surface M into S^5 for the Tanaka-Webster connection $\hat{\nabla}.$

Denote by $\hat{\nabla}$ the Tanaka-Webster connection of E^6 and by $\hat{\nabla}^o$, $\hat{\nabla}'$ the induced connections on M and S^5 , respectively. Let H, σ, S , and \hat{D} denote the mean curvature vector, the second fundamental form, the Weingarten maps and the normal connection of M in E^6 , respectively. Denote by H', σ', S' and \hat{D}' the corresponding for M in S^5 . Then we have H = H' - x.

Since M is pseudo-Hermitian 2-type and mass-symmetric, the position vector x of M with respect to the origin of E^6 can be written as follows:

(14)
$$x = x_p + x_q, \quad \hat{\Delta}x_p = \lambda_p x_p, \quad \hat{\Delta}x_q = \lambda_q x_q,$$

where x_p, x_q are non-constant E^6 -valued maps on M.

Let $e_i (i=1,\ldots,5)$ be an orthonormal frame field along M^2 such that e_1,e_2 are tangent to M^2 , $\varphi e_1 = e_3, \varphi e_2 = e_4, \xi = e_5$. We denote by $\{\hat{\omega}_i\}$, $i=1,\ldots,5$ the dual frame field of the frame $\{e_i\}$ for the Tanaka-Webster connection $\hat{\nabla}$. Then we have

$$\hat{\nabla}e_i = \sum_{i=1}^6 \hat{\omega}_i^j e_j.$$

From (2) we get

$$\hat{D}_X V = D_X V + \eta(V)\varphi X - g(\varphi X, V)\xi,$$

where $X \in TM$ and $V \in TM^{\perp}$. Using the above equation, we have

(15)
$$\hat{\omega}_3^4 = \omega_3^4, \quad \hat{\omega}_5^j = \omega_5^j = 0, \quad \hat{\omega}_5^3(e_i) = \omega_5^3(e_i) + g(e_i, e_1) = 0,$$

$$\hat{\omega}_5^4(e_i) = \omega_5^4(e_i) + g(e_i, e_2) = 0, \quad \hat{\omega}_6^k = \omega_6^k = 0,$$

where i = 1, 2, j = 1, 2, 5, 6, and k = 3, 4, 5, 6.

On the other hand, from (10) we have $\hat{\Delta}x = -2H$. By using (14) we have

(16)
$$\hat{\Delta}H = \frac{trS_{\varphi e_1}}{2}(\lambda_p + \lambda_q)\varphi e_1 - (\lambda_p + \lambda_q - \frac{\lambda_p \lambda_q}{2})x.$$

From (12) and (16) we have that $trS_{\varphi e_1}$ is a constant. When $trS_{\varphi e_1}=0,\,M$ is a minimal surface of S^5 and pseudo-Hermitian 1-type. We may assume that $trS_{\varphi e_1} = constant \neq 0.$

By direct computation, we get

(17)
$$\hat{\Delta}^{\hat{D}'}H' = \sum_{i=1}^{2} (\hat{D}'_{\nabla_{e_i}e_i}H' - \hat{D}'_{e_i}\hat{D}'_{e_i}H') = \frac{trS_{\varphi e_1}}{2}\hat{\Delta}^{\hat{D}}\varphi e_1$$
$$= \frac{trS_{\varphi e_1}}{2} [|\hat{D}\varphi e_1|^2 \varphi e_1 - (tr\nabla\omega_3^4)\varphi e_2],$$

where

(18)
$$|\hat{D}\varphi e_1| = \sum_{i=1}^2 |\hat{D}_{e_i}\varphi e_1| = \sum_{i=1}^2 \omega_3^4(e_i)$$

and

(19)
$$tr\nabla\omega_3^4 = \sum_{i=1}^2 (\nabla_{e_i}\omega_3^4)(e_i) = \sum_{i=1}^2 (e_i\omega_3^4(e_i) - \omega_3^4(\nabla_{e_i}e_i)).$$

Since

$$a'(H') = \frac{trS_{\varphi e_1}}{2}(trS_{\varphi e_1}S_{\varphi e_2})\varphi e_2 \text{ and}$$

$$tr(\nabla S_H) = \frac{trS_{\varphi e_1}}{2} \sum_{i=1}^2 ((\nabla_{e_i}S_{\varphi e_1})e_i + \omega_3^4(e_i)S_{\varphi e_2}e_i),$$

from (12), (16) and (17), therefore we have the following equations:

(20)
$$\sum_{i=1}^{2} ((\nabla_{e_i} S_{\varphi e_1}(e_i)) + \omega_3^4(e_i) S_{\varphi e_2}(e_i)) = 0,$$

(21)
$$|\hat{D}\varphi e_1|^2 + trS_{\varphi e_1}^2 = \lambda_p + \lambda_q - 2,$$

$$(22) tr \nabla \omega_3^4 - tr S_{\omega e_1} S_{\omega e_2} = 0.$$

Since $trS_{\varphi e_1}$ is a constant, we get

$$0 = \operatorname{grad} tr S_{\varphi e_1} = \sum_{i=1}^{2} ((\hat{\nabla}_{e_i} S_{\varphi e_1})(e_i) - S_{\hat{D}_{e_i} \varphi e_1} e_i)$$
$$= \sum_{i=1}^{2} ((\nabla_{e_i} S_{\varphi e_1})(e_i) - \omega_3^4(e_i) S_{\varphi e_2} e_i).$$

From this and (20) we have

(23)
$$\sum_{i=1}^{2} (\nabla_{e_i} S_{\varphi e_1})(e_i) = 0,$$

and

(24)
$$\sum_{i=1}^{2} \omega_3^4(e_i) S_{\varphi e_2} e_i = 0.$$

Let M be a Legendre surface in Sasakian space forms S^5 . Then since $S_{\varphi e_1}e_2=S_{\varphi e_2}e_1$ (by [2]) and $trS_{\varphi e_2}=0$, if

(25)
$$S_{\varphi e_1} = \begin{bmatrix} a & b \\ b & c \end{bmatrix}, \text{ then } S_{\varphi e_2} = \begin{bmatrix} b & c \\ c & -b \end{bmatrix},$$

where a, b, c are functions on M. By the similar way with ([1]), we have $\det S_{\varphi e_2} \neq 0$. Since $\det S_{\varphi e_2} \neq 0$, using (24) we obtain $\omega_3^4 = 0$.

From (18) and (21) we get $trS_{\varphi e_1}$ is a constant. From (19) and (22) we get $trS_{\varphi e_1}S_{\varphi e_2}=0$. Applying this to (25) we find that $b=0,\ a=constant,\ c=constant$. Therefore we obtain:

Proposition 4.1. Let M be a non-minimal pseudo-Hermitian mass-symmetric 2-type Legendre surface in the unit sphere S^5 in E^6 . Then M is a Chen surface.

Lemma 4.2. Let M be a pseudo-Hermitian mass-symmetric 2-type Legendre surface in the unit sphere S^5 in E^6 . Then M is flat.

Proof. Let M be a Legendre surface in a Sasakian manifold S^5 for pseudo-Hermitian geometry. Then using (4) we get

(26)
$$\hat{\nabla}_{e_j} \varphi e_i = \hat{\nabla}'_{e_j} \varphi e_i = (\hat{\nabla}'_{e_j} \varphi) e_i + \varphi(\hat{\nabla}'_{e_j} e_i)$$
$$= \varphi(\nabla^o_{e_j} e_i + \sigma'(e_i, e_j)).$$

On the other hand,

(27)
$$\hat{\nabla}_{e_j} \varphi e_i = -S_{\varphi e_i} e_j + \hat{D}_{e_j} \varphi e_i.$$

Using $S_{\varphi e_1}e_2 = S_{\varphi e_2}e_1$ we have

(28)
$$\varphi(\sigma'(e_i, e_j)) = \varphi(g(S_{\varphi e_1} e_i, e_j) \varphi e_1 + g(S_{\varphi e_2} e_i, e_j) \varphi e_2)$$
$$= -g(S_{\varphi e_i} e_1, e_j) e_1 - g(S_{\varphi e_i} e_2, e_j) e_2$$
$$= -S_{\varphi e_i} e_j, \quad i, j = 1, 2.$$

From (26), (27) and (28), we get $\hat{D}_{e_j}\varphi e_i = \varphi(\nabla_{e_j}^o e_i)$. Thus $\omega_3^4 = 0$ implies that $\hat{D}_{e_j}\varphi e_i = 0$. Hence we have $\varphi(\nabla_{e_i}^o e_i) = 0$. Using (1) obtain $\nabla_{e_i}^o e_i = 0$. \square

Since M is flat, $\hat{K}(e_1, e_2) = 1 + ac - c^2 = 0$. Hence from $c \neq 0$ we have

$$(29) a = \frac{c^2 - 1}{c}.$$

Definition. If γ is a curve in a contact Riemannian manifold N, parametrized by arc-length s, we say that γ is a Frenet curve of osculating order r when there exist orthornormal vector fields E_1, E_2, \ldots, E_r , along γ such that

$$\dot{\gamma} = E_1, \ \hat{\nabla}_{\dot{\gamma}} E_1 = \hat{\kappa}_1 E_2, \ \hat{\nabla}_{\dot{\gamma}} E_2 = -\hat{\kappa}_1 E_1 + \hat{\kappa}_2 E_3, \dots,
\hat{\nabla}_{\dot{\gamma}} E_{r-1} = -\hat{\kappa}_{r-2} E_{r-2} + \hat{\kappa}_{r-1} E_r, \ \hat{\nabla}_{\dot{\gamma}} E_r = -\hat{\kappa}_{r-1} E_{r-1},$$

where $\hat{\kappa}_1, \hat{\kappa}_2, \dots, \hat{\kappa}_{r-1}$ are positive C^{∞} functions of s. $\hat{\kappa}_j$ is called the j-th pseudo-Hermitian curvature of γ . A geodesic is a Frenet curve of osculating order 1, a pseudo-Hermitian circle is a Frenet curve of osculating order 2 with $\hat{\kappa}_1$ a constant; a pseudo-Hermitian helix of order r is a Frenet curve of osculating order r, such that $\hat{\kappa}_1, \hat{\kappa}_2, \dots, \hat{\kappa}_{r-1}$ are constants.

Theorem 4.3. Let M be a pseudo-Hermitian mass-symmetric 2-type Legendre surface in the unit sphere S^5 in E^6 . Then M is locally product of two pseudo-Hermitian circles.

Proof. For the second fundamental form σ of M in E^6 , we have

$$\sigma(e_1, e_1) = a\varphi e_1 - x,$$

$$\sigma(e_1, e_2) = c\varphi e_2,$$

$$\sigma(e_2, e_2) = c\varphi e_1 - x,$$

for a constant $a, c \neq 0$. From this and the definition (2) of the Tanaka-Webster connection $\hat{\nabla}$ we get

(30)
$$\hat{\nabla}_{e_1} e_1 = a\varphi e_1 - x, \ \hat{\nabla}_{e_1} e_2 = c\varphi e_2, \ \hat{\nabla}_{e_1} \varphi e_1 = -ae_1,$$
$$\hat{\nabla}_{e_1} \varphi e_2 = -ce_2, \ \hat{\nabla}_{e_1} \xi = 0, \ \hat{\nabla}_{e_1} x = e_1$$

and

(31)
$$\hat{\nabla}_{e_2} e_1 = c \varphi e_2, \ \hat{\nabla}_{e_2} e_2 = c \varphi e_1 - x, \ \hat{\nabla}_{e_2} \varphi e_1 = -c e_2,$$
$$\hat{\nabla}_{e_2} \varphi e_2 = -c e_1, \ \hat{\nabla}_{e_2} \xi = 0, \ \hat{\nabla}_{e_2} x = e_2.$$

Let $e_1 = E_1$, from (30) we have

$$\hat{\nabla}_{E_1} E_1 = \bar{\nabla}_{E_1} E_1 = a\varphi e_1 - x = \kappa_1 E_2,$$

where $E_2 = \frac{a\varphi e_1 - x}{\sqrt{a^2 + 1}}, \kappa_1 = \sqrt{a^2 + 1}.$

$$\hat{\nabla}_{E_1} E_2 = \frac{a}{\sqrt{a^2 + 1}} \hat{\nabla}_{e_1} \varphi e_1 - \frac{1}{\sqrt{a^2 + 1}} \hat{\nabla}_{e_1} x = -\sqrt{a^2 + 1} e_1 = -k_1 E_1.$$

Thus $\hat{\kappa}_2 = 0$ and e_1 -curve is a pseudo-Hermitian circle.

Now we put $e_2 = E_1$. From (31) we have

$$\hat{\nabla}_{E_1} E_1 = \bar{\nabla}_{E_1} E_1 = c\varphi e_1 - x = \kappa_1 E_2,$$

where $E_2 = \frac{c\varphi e_1 - x}{\sqrt{c^2 + 1}}, \ \kappa_1 = \sqrt{c^2 + 1}.$

$$\hat{\nabla}_{E_1} E_2 = \frac{c}{\sqrt{c^2 + 1}} \hat{\nabla}_{e_2} \varphi e_1 - \frac{1}{\sqrt{c^2 + 1}} \hat{\nabla}_{e_2} x = -\sqrt{c^2 + 1} e_2 = -k_1 E_1.$$

Hence $\hat{\kappa}_2 = 0$ and e_2 -curve is a pseudo-Hermitian circle.

References

- [1] C. Baikoussis and D. E. Blair, 2-type integral surfaces in S⁵(1), Tokyo J. Math. 14 (1991), no. 2, 345-356. https://doi.org/10.3836/tjm/1270130378
- [2] D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, 203, Birkhäuser Boston, Inc., Boston, MA, 2002. https://doi.org/10. 1007/978-1-4757-3604-5
- [3] B.-Y. Chen, Total mean curvature and submanifolds of finite type, Series in Pure Mathematics, 1, World Scientific Publishing Co., Singapore, 1984. https://doi.org/10.1142/0065
- [4] J. T. Cho, Geometry of contact strongly pseudo-convex CR-manifolds, J. Korean Math. Soc. 43 (2006), no. 5, 1019–1045. https://doi.org/10.4134/JKMS.2006.43.5.1019
- [5] J.-E. Lee, Laplacians and Legendre surfaces in pseudo-Hermitian geometry, Bull. Iranian Math. Soc. 44 (2018), no. 4, 899-913. https://doi.org/10.1007/s41980-018-0058-1
- [6] N. Tanaka, On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections, Japan. J. Math. (N.S.) 2 (1976), no. 1, 131-190. https://doi.org/10.4099/math1924.2.131
- [7] S. Tanno, Variational problems on contact Riemannian manifolds, Trans. Amer. Math. Soc. 314 (1989), no. 1, 349–379. https://doi.org/10.2307/2001446
- [8] S. M. Webster, Pseudo-Hermitian structures on a real hypersurface, J. Differential Geom. 13 (1978), no. 1, 25-41. http://projecteuclid.org/euclid.jdg/1214434345

JI-EUN LEE
INSTITUTE OF BASIC SCIENCE
CHONNAM NATIONAL UNIVERSITY
GWANGJU 61186, KOREA
Email address: jieunlee12@naver.com