• Title/Summary/Keyword: symmetric identities

Search Result 26, Processing Time 0.018 seconds

FORMULAS AND RELATIONS FOR BERNOULLI-TYPE NUMBERS AND POLYNOMIALS DERIVE FROM BESSEL FUNCTION

  • Selin Selen Ozbek Simsek;Yilmaz Simsek
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.1175-1189
    • /
    • 2023
  • The main purpose of this paper is to give some new identities and properties related to Bernoulli type numbers and polynomials associated with the Bessel function of the first kind. We give symmetric properties of the Bernoulli type numbers and polynomials. Moreover, using generating functions and the Faà di Bruno's formula, we derive some new formulas and relations related to not only these polynomials, but also the Bernoulli numbers and polynomials and the Euler numbers and polynomials.

THE CURVATURE TENSORS IN THE EINSTEIN'S $^*g$-UNIFIED FIELD THEORY II. THE CONTRACTED SE-CURVATURE TENSORS OF $^*g-SEX_n$

  • Chung, Kyung-Tae;Chung, Phil-Ung;Hwang, In-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.641-652
    • /
    • 1998
  • Chung and et al. ([2].1991) introduced a new concept of a manifold, denoted by $^{\ast}g-SEX_n$, in Einstein's n-dimensional $^{\ast}g$-unified field theory. The manifold $^{\ast}g-SEX_n$ is a generalized n-dimensional Riemannian manifold on which the differential geometric structure is imposed by the unified field tensor $^{\ast}g^{\lambda \nu}$ through the SE-connection which is both Einstein and semi-symmetric. In this paper, they proved a necessary and sufficient condition for the unique existence of SE-connection and sufficient condition for the unique existence of SE-connection and presented a beautiful and surveyable tensorial representation of the SE-connection in terms of the tensor $^{\ast}g^{\lambda \nu}$. Recently, Chung and et al.([3],1998) obtained a concise tensorial representation of SE-curvature tensor defined by the SE-connection of $^{\ast}g-SEX_n$ and proved deveral identities involving it. This paper is a direct continuations of [3]. In this paper we derive surveyable tensorial representations of constracted curvature tensors of $^{\ast}g-SEX_n$ and prove several generalized identities involving them. In particular, the first variation of the generalized Bianchi's identity in $^{\ast}g-SEX_n$, proved in theorem (2.10a), has a great deal of useful physical applications.

  • PDF

SOME PROPERTIES OF GENERALIZED q-POLY-EULER NUMBERS AND POLYNOMIALS WITH VARIABLE a

  • KIM, A HYUN
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.1_2
    • /
    • pp.133-144
    • /
    • 2020
  • In this paper, we discuss generalized q-poly-Euler numbers and polynomials. To do so, we define generalized q-poly-Euler polynomials with variable a and investigate its identities. We also represent generalized q-poly-Euler polynomials E(k)n,q(x; a) using Stirling numbers of the second kind. So we explore the relation between generalized q-poly-Euler polynomials and Stirling numbers of the second kind through it. At the end, we provide symmetric properties related to generalized q-poly-Euler polynomials using alternating power sum.

A NOTE ON q-ANALOGUE OF POLY-BERNOULLI NUMBERS AND POLYNOMIALS

  • Hwang, Kyung Won;Nam, Bo Ryeong;Jung, Nam-Soon
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.5_6
    • /
    • pp.611-621
    • /
    • 2017
  • In this paper, we define a q-analogue of the poly-Bernoulli numbers and polynomials which is generalization of the poly Bernoulli numbers and polynomials including q-polylogarithm function. We also give the relations between generalized poly-Bernoulli polynomials. We derive some relations that are connected with the Stirling numbers of second kind. By using special functions, we investigate some symmetric identities involving q-poly-Bernoulli polynomials.

THE CURVATURE TENSORS IN THE EINSTEIN′S *g- UNIFIED FIELD THEORY I. THE SE-CURVATURE TENSOR OF *g-SE $X_{n}$

  • Chung, Kyung-Tae;Chung, Phil-Ung;Hwang, In-Ho
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.1045-1060
    • /
    • 1998
  • Recently, Chung and et al. ([11], 1991c) introduced a new concept of a manifold, denoted by *g-SE $X_{n}$ , in Einstein's n-dimensional *g-unified field theory. The manifold *g-SE $X_{n}$ is a generalized n-dimensional Riemannian manifold on which the differential geometric structure is imposed by the unified field tensor * $g^{λν}$ through the SE-connection which is both Einstein and semi-symmetric. In this paper, they proved a necessary and sufficient condition for the unique existence of SE-connection and presented a beautiful and surveyable tensorial representation of the SE-connection in terms of the tensor * $g^{λν}$. This paper is the first part of the following series of two papers: I. The SE-curvature tensor of *g-SE $X_{n}$ II. The contracted SE-curvature tensors of *g-SE $X_{n}$ In the present paper we investigate the properties of SE-curvature tensor of *g-SE $X_{n}$ , with main emphasis on the derivation of several useful generalized identities involving it. In our subsequent paper, we are concerned with contracted curvature tensors of *g-SE $X_{n}$ and several generalized identities involving them. In particular, we prove the first variation of the generalized Bianchi's identity in *g-SE $X_{n}$ , which has a great deal of useful physical applications.tions.

  • PDF

A Numerical Analysis on the Binary Droplet Collision with the Level Set Method (Level Set 방법을 이용한 액적 충돌 현상에 대한 수치해석)

  • Lee, Sang-Hyuk;Hur, Nahm-Keon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.559-564
    • /
    • 2008
  • A prediction of binary droplets collision is important in the formation of falling drops and the evolution of sprays. The droplet velocity, impact parameter and drop-size ratio have influence on the interaction of the droplets. By the effect of these parameter, the collision processes are generated with the complicated phenomena. The droplet collision can be classified into four interactions such as the bouncing, coalescence, reflexive separation and stretching separation. In this study, the two-phase flow of the droplet collision was simulated numerically by using the Level Set method. 2D axi-symmetric simulations on the head-on collisions in the coalescence and reflexive separation, and 3D simulation on the off-center collisions in the coalescence and stretching separation were performed. These numerical results showed good agreements with the experimental and analytical results. For tracking the identity of droplets after the collision, transport equation for the volume fraction of the each initial droplet were used. From this, the identities of droplets were analyzed on the collision of droplets having different size.

  • PDF