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FORMULAS AND RELATIONS FOR BERNOULLI-TYPE

NUMBERS AND POLYNOMIALS DERIVE FROM

BESSEL FUNCTION

Selin Selen Ozbek Simsek and Yilmaz Simsek

Abstract. The main purpose of this paper is to give some new iden-
tities and properties related to Bernoulli type numbers and polynomials

associated with the Bessel function of the first kind. We give symmetric

properties of the Bernoulli type numbers and polynomials. Moreover, us-
ing generating functions and the Faà di Bruno’s formula, we derive some

new formulas and relations related to not only these polynomials, but
also the Bernoulli numbers and polynomials and the Euler numbers and

polynomials.

1. Introduction

Special numbers and polynomials with their generating functions have nu-
merous applications in almost all applied sciences, including all subjects of
mathematics. Thanks to these important applications, many researchers still
continue to work and research intensively, including the generating functions
of these numbers and polynomials.

The motivation of this study is to give new relations and formulas on
Bernoulli-type numbers and polynomials with the help of Bessel functions and
Euer gamma functions, which are in their very active and well-known classes
in the theory of special functions.

Before we start to give these results, we will briefly give some definitions
and relations below.

Let N = {1, 2, 3, . . .}, N0 = {0, 1, 2, 3, . . .}, and Z− = {. . . ,−2,−1}. Let Z,
R, and C, respectively, denote the sets of integers, real numbers, and complex
numbers.

The Bernoulli numbers and polynomials are, respectively, defined by

(1)
t

et − 1
=

∞∑
n=0

Bn
tn

n!
, |t| < 2π,
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and

(2)
tetz

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
, |t| < 2π,

(cf. [1–21]).
The Euler polynomials and numbers are, respectively, defined by

(3)
2etx

et + 1
=

∞∑
n=0

En(x)
tn

n!
, |t| < π,

and

(4)
2

et + 1
=

∞∑
n=0

En
tn

n!
, |t| < π

(cf. [1–21]).
Recently, Frappier ([2,3]) gave new type generalized Bernoulli numbers and

polynomials, which are denoted by Bn,α, Bn,α (x). In order to give generating
functions for these numbers and polynomials, we need the following special
functions:

(5) gα (z) =
Γ (α+ 1) Jα (z) 2α

zα
,

where

Jα (z) =

∞∑
k=0

(−1)kz2k+α

Γ (k + 1)Γ (α+ k + 1) 22k+α

is the Bessel function of the first kind of order α and Γ (z) is the Euler gamma

function (cf. [2,15]). The function Jα(z)
zα is an even entire function of exponen-

tial type one. Here α /∈ Z−. The zeros jk = jk(α) of
Jα(z)
zα may be ordered in

such a way that j−k = −jk and 0 ≤ |j1| ≤ |j2| ≤ · · · . Frappier [2] gave the
following generating functions for the Bernoulli-type polynomials Bn,α (x) as
follows:

(6)
e(x−

1
2 )z

gα
(
iz
2

) =

∞∑
n=0

Bn,α (x)
zn

n!
, |z| < 2 |j1| .

Note that Bn,α (0) = Bn,α denotes the Bernoulli-type numbers.
Setting α = 1

2 and α = − 1
2 , (6) reduces to (2) and (3), respectively.

In [2], Frappier gave fundamental properties of the α-Bernoulli type polyno-
mials and numbers. By using different values of α, Frappier found the values of
the α-Bernoulli type polynomials and numbers. In [3], Frappier gave not only
the relation between the sums

∑∞
k=1 j

−2r
k , r ∈ Z+, where jk = jk(α) denotes

the zeros of the Bessel function of the first kind of order α, and α-Bernoulli type
polynomials but also many applications related to Euler-MacLaurin summation
formula and infinite series. In [4], Frappier constructed the α-calculus with the
help of the α-Bernoulli type polynomials. Frappier gave many applications of
the α-calculus. We can give many new relations and identities related to the
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α-Bernoulli type polynomials. We also study on relations between logarithmic
function which involve the function gα (z) trigonometric function and classical
Bernoulli numbers and Euler numbers as well.

Yang [21] studied on symmetry for the classical Bernoulli polynomials of
higher order. Yang gave a relation of symmetry between power sum polynomi-
als and the classical Bernoulli numbers. This property has also been studied
by Tuenter [19]. By using the same motivation of the above studies, we can
prove an identity of symmetry for the α-Bernoulli type polynomials.

We summarize our results as follows: In Section 2, we give some formulas
and relations of the Bernoulli-type numbers and polynomials. We prove Raabe
type multiplication formula for these polynomials. In Section 3, using generat-
ing functions, which related to logarithm of functions involving trigonometric
functions and the function gα (z), we give some new identities for the Bernoulli-
type numbers and polynomials. We also establish some formulas with the aid
of the function 1

gα(z) and Faà di Bruno’s formula gives an explicit formula.

2. Some identities related to the Bernoulli-type numbers and
polynomials

In this section, by the help of generating functions, we give many relations
and identities associated with the Bernoulli-type numbers and polynomials.

Theorem 2.1. Let n ∈ N. For an arbitrary α (not a negative integer), we
have

(7)

n∑
k=0

(
n

k

)
Bn−k,α(x)

Γ(α+ 1)

4kΓ(α+ k + 1)
=

(
x− 1

2

)n

.

Proof. Using (6), we get

∞∑
n=0

(
x− 1

2

)n
zn

n!
= gα

(
iz

2

) ∞∑
n=0

Bn,α (x)
zn

n!
.

Combining the above equation with (5), we obtain

∞∑
n=0

(
x− 1

2

)n
zn

n!
=

∞∑
n=0

n∑
k=0

(
n

k

)
Bn−k,α(x)

Γ(α+ 1)

4kΓ(α+ k + 1)

zn

n!
.

Comparing the coefficients of zn

n! both sides of the above, we arrive at the desire
result. □

Substituting x = 1
2 into (7), we arrive at the following result:

Corollary 2.2. Let n ∈ N. Then we have

n∑
k=0

(
n

k

)
Bn−k,α

(
1
2

)
Γ(α+ 1)

4kΓ(α+ k + 1)
= 0.



1178 S. S. OZBEK SIMSEK AND Y. SIMSEK

Integrating both sides of the equation (7) from a to b, we obtain

n∑
k=0

(
n

k

) n−k∑
j=0

(
n− k

j

)
Bj,α

Γ(α+ 1)

4kΓ(α+ k + 1)

∫ b

a

xn−k−jdx =

∫ b

a

(
x− 1

2

)n

dx.

Therefore, we get

n∑
k=0

n−k∑
j=0

(
n

k

)(
n− k

j

)
(n+ 1)Γ(α+ 1)

(
bn−k−j+1 − an−k−j+1

)
4k (n− k − j + 1)Γ(α+ k + 1)

Bj,α

=

(
b− 1

2

)n+1

−
(
a− 1

2

)n+1

.

Combining the above equation with the following well-known identities for the
Euler gamma function:

Γ(α+ 1) = αΓ(α)

and

Γ(α+ k + 1) = α(α+ 1)(α+ 2) · · · (α+ k)Γ(α),

we get the following theorem:

Theorem 2.3. Let n ∈ N. For an arbitrary α (not a negative integer), we
have

n∑
k=0

n−k∑
j=0

(
n

k

)(
n− k

j

)
4−k (n+ 1)

(
bn−k−j+1 − an−k−j+1

)
(n− k − j + 1) (α+ 1)(α+ 2) · · · (α+ k)

Bj,α(8)

=

(
b− 1

2

)n+1

−
(
a− 1

2

)n+1

.

Putting b = 1 and a = 0 in (8), we have the following formula for the finite
sums:

Corollary 2.4. Let n ∈ N. For an arbitrary α (not a negative integer), we
have

n∑
k=0

n−k∑
j=0

(
n

k

)(
n− k

j

)
4−kBj,α

(n− k − j + 1) (α+ 1)(α+ 2) · · · (α+ k)
=

1 + (−1)n

(n+ 1) 2n+1
.

Some formulas including the Raabe type multiplication formula of the
Bernoulli-type polynomials were given by the first author [14]. Now we briefly
summarize this formula by following theorem.

Theorem 2.5. Let n ∈ N. For an arbitrary α (not a negative integer), we
have

(9)

m−1∑
k=0

Bn,α

(
x+

k

m

)
=

n∑
j=0

m−1∑
v=1

(
n

j

)
vn−jmjBj,α (x) .
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Proof. Multiply
∑m−1

k=0 Bn,α

(
x+ k

m

)
by (mt)n

n! and sum over all n ≥ 0, we get

∞∑
n=0

(
m−1∑
k=0

Bn,α

(
x+

k

m

))
(mt)

n

n!
=

m−1∑
k=o

( ∞∑
n=0

Bn,α

(
x+

k

m

)
(mt)

n

n!

)
.

By using (6), we have

∞∑
n=0

(
m−1∑
k=0

Bn,α

(
x+

k

m

))
(mt)

n

n!
=

m−1∑
k=0

e(x+
k
m− 1

2 )mt

gα
(
imt
2

) .

After some elementary calculations in the above, we obtain

∞∑
n=0

(
m−1∑
k=0

Bn,α

(
x+

k

m

))
(mt)

n

n!

=

∞∑
n=0

 n∑
j=0

(
n

j

)
Bj,α (x) (Bn+1−j (m)−Bn+1−j)m

j

n+ 1− j

 tn

n!
.

Combining the above equation with the following well-known formula for

Bn+1−j (m)−Bn+1−j

n+ 1− j
=

m−1∑
v=1

vn−j

we get

∞∑
n=0

(
m−1∑
k=0

Bn,α

(
x+

k

m

))
(mt)

n

n!
=

∞∑
n=0

 n∑
j=0

m−1∑
v=1

(
n

j

)
vn−jmjBj,α (x)

 tn

n!
.

By comparing the coefficients of tn

n! both sides of the above, we arrive at the
desired result. □

Theorem 2.6. Let n ∈ N0. Then we have

Bn,α (x+ 1)−Bn,α (x− 1) =

n∑
k=0

(
n

k

)(
1− (−1)

n−k
)
Bk,α (x) .

Proof. We set

(10) f (z) =
e(x−

1
2 )z sinh z

gα
(
iz
2

) .

Therefore

f (z) =
1

2

(
e(x+1− 1

2 )z

gα
(
iz
2

) − e(x−1− 1
2 )z

gα
(
iz
2

) )
.

Combining (6) with the above equation, we get the following series for the
function f (z):

(11) f (z) =

∞∑
n=0

(
Bn,α (x+ 1)−Bn,α (x− 1)

2

)
zn

n!
.
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Combining (10) with (11), we obtain

f (z) =

( ∞∑
n=0

Bn,α (x)
zn

n!

)(
1

2

∞∑
n=0

zn

n!
− 1

2

∞∑
n=0

(−1)
n
zn

n!

)
(12)

=

∞∑
n=0

 n∑
k=0

(
n

k

)(1− (−1)
n−k

)
Bk,α (x)

2

 zn

n!
.

By (11) and (12), we get

∞∑
n=0

 n∑
k=0

(
n

k

)(1− (−1)
n−k

)
Bk,α (x)

2

 zn

n!

=

∞∑
n=0

(
Bn,α (x+ 1)−Bn,α (x− 1)

2

)
zn

n!
.

By comparing the coefficient zn

n! in the both sides of the above equation, we
arrive at the desired result. □

Note that proofs of the following identities and relations can be given along
the same lines as the proof of Theorem 2.6. We now give just sketch of these
proofs as follows.

Corollary 2.7. Let n ∈ N0. Then we have

Bn,α (x+ 1) +Bn,α (x− 1) =

n∑
k=0

(
n

k

)(
1 + (−1)

n−k
)
Bk,α (x) .

Proof. We define

f (z) =
e(x−

1
2 )z cosh z

gα
(
iz
2

) .

By the same calculation of Theorem 2.6, we easily arrive at the desire result. □

Corollary 2.8. Let n ∈ N0. Then we have
n∑

k=0

(
n

k

)
2n−k (Bk,α (x+ 1) +Bk,α (x− 1))Bn−k

(
1

2

)

=

n∑
k=0

(
n

k

)
2n−k

(
1 + (−1)

n−k
)
Bk,α (x)Bn−k.

Proof. We define

f (z) =
2ze(x−

1
2 )z coth z

gα
(
iz
2

) .

By the same calculation of Theorem 2.6, we easily arrive at the desired result.
□
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Corollary 2.9. Let n ∈ N0. Then we have

n∑
k=0

k∑
m=0

(
n

k

)(
k

m

)
2n−k

(
1 + (−1)

k−m
)
Bm,α (x)Bn−k

(
1

2

)

=

n∑
k=0

(
n

k

)
2n−k

(
1 + (−1)

n−k
)
Bk,α (x)Bn−k.

Proof. By combining Corollary 2.7 with Corollary 2.8, we obtain the desired
result. □

Corollary 2.10. Let n ∈ N0. Then we have

n∑
k=0

(
n

k

)
(Bk,α (x+ 1)−Bk,α (x− 1))En−k

=

n∑
k=0

(
n

k

)2k+1
(
2k+1 − 1

) (
(−1)

k+1
+ 1
)
Bn−k,α (x)Bk+1

k + 1
.

Proof. We define

f (z) =
2e(x−

1
2 )z tanh z

gα
(
iz
2

) .

By the same calculation of Theorem 2.6, we easily arrive at the desire result. □

Corollary 2.11. Let n ∈ N0. Then we have

n∑
k=0

k∑
m=0

(
n

k

)(
k

m

)(
1− (−1)

k−m
)
Bm,α (x)En−k

=

n∑
k=0

(
n

k

)2k+1
(
2k+1 − 1

) (
(−1)

k+1
+ 1
)
Bn−k,α (x)Bk+1

k + 1
.

Proof. By combining Theorem 2.6 with Corollary 2.10, we obtain the desired
result. □

We now give symmetry relation for the Bernoulli-type numbers and polyno-
mials by the next theorem.

Theorem 2.12. Let n ∈ N0. For each pair of integer a and b, we have

n∑
k=0

(
n

k

)
akbn−kBn−k,α (ay)

ab−1∑
j=0

Bk,α

(
bx+

j

a

)

=

n∑
k=0

(
n

k

)
bkan−kBn−k,α (by)

ab−1∑
j=0

Bk,α

(
ax+

j

b

)
.
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Proof. Setting

f (z; a, b) =
e(ab(x+y)− a+b

2 )z (eabz − 1
)

gα
(
iaz
2

)
gα
(
ibz
2

)
(ez − 1)

.

This function is symmetric with respect to a and b. From this function, we
obtain the following relation

f (z; a, b) =

(
e(abxz−

az
2 )

gα
(
iaz
2

) (
eabz − 1

)
(ez − 1)

)
e(abyz−

bz
2 )

gα
(
ibz
2

)
=

ab−1∑
j=0

e(bx+
j
a− 1

2 )az

gα
(
iaz
2

)
( ∞∑

n=0

Bn,α (ay)
(bz)

n

n!

)

=

ab−1∑
j=0

( ∞∑
n=0

Bn,α

(
bx+

j

a

)
(az)

n

n!

)( ∞∑
n=0

Bn,α (ay)
(bz)

n

n!

)
.

Thus

(13) f (z; a, b) =
∞∑

n=0

 n∑
k=0

(
n

k

)
akbn−kBn−k,α (ay)

ab−1∑
j=0

Bk,α

(
bx+

j

a

) zn

n!
.

Therefore

(14) f (z; a, b) =

∞∑
n=0

 n∑
k=0

(
n

k

)
bkan−kBn−k,α (by)

ab−1∑
j=0

Bk,α

(
ax+

j

b

) zn

n!
.

Combining (13) with (14), we get

∞∑
n=0

 n∑
k=0

(
n

k

)
akbn−kBn−k,α (ay)

ab−1∑
j=0

Bk,α

(
bx+

j

a

) zn

n!

=

∞∑
n=0

 n∑
k=0

(
n

k

)
bkan−kBn−k,α (by)

ab−1∑
j=0

Bk,α

(
ax+

j

b

) zn

n!
.

By comparing the coefficients of zn

n! both sides of the above, we arrive at the
desired result. □

By substituting α = 1
2 into Theorem 2.12, we have the following results:

Corollary 2.13.

n∑
k=0

(
n

k

)
akbn−kBn−k (ay)

ab−1∑
j=0

Bk

(
bx+

j

a

)
(15)

=

n∑
k=0

(
n

k

)
bkan−kBn−k (by)

ab−1∑
j=0

Bk

(
ax+

j

b

)
.
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By substituting α = − 1
2 into Theorem 2.12, we have the following symmetry

property for the Euler polynomials:

Corollary 2.14.

n∑
k=0

(
n

k

)
akbn−kEn−k (ay)

ab−1∑
j=0

Ek

(
bx+

j

a

)
(16)

=

n∑
k=0

(
n

k

)
bkan−kEn−k (by)

ab−1∑
j=0

Ek

(
ax+

j

b

)
.

There are different proofs of the equations (15) and (16) (cf. [8, 9,17]). The
above relations given in (15) and (16) are symmetric with respect to a and b.
These relations are also related to summation of powers of integers, respectively:

σm (k) = 1m + 2m + · · ·+ am

and

σ∗
m (k) = 1m − 2m +− · · ·+ am,

where m ∈ N0.
The summation σm (k) has been studied by many authors. For example, Jo-

hann Faulhaber (1580-1635) and Jacob Bernoulli (1654-1705). After Bernoulli,
there are many papers and books related to the sums σm (k) and σ∗

m (k) (cf.
[1–21]).

Theorem 2.15. Let n ∈ N. Then we have

6

n−1∑
k=0

(
n

(
n− 1

k

)
− 2

(
n

k

))
Bk, 32

(x) = n(n− 1)(n− 2)xn−3 − 6nBn−1, 32
(x) .

Proof. Substituting α = 3
2 into (6), we have

(6(z − 2)ez + 6z + 12)

∞∑
n=0

Bn, 32
(x)

zn

n!
=

d3

dx3
{ezx}

see also [2]. After some calculations in the above equation, we get

∞∑
n=0

n(n− 1)(n− 2)xn−3 z
n

n!

= − 12

∞∑
n=0

n∑
k=0

(
n

k

)
Bk, 32

(x)
zn

n!
+ 6

∞∑
n=0

n

n−1∑
k=0

(
n− 1

k

)
Bk, 32

(x)
zn

n!

+ 12

∞∑
n=0

Bn, 32
(x)

zn

n!
+ 6

∞∑
n=0

nBn−1, 32
(x)

zn

n!
.

Comparing the coefficients of zn

n! both sides of the above, we arrive at the desire
result. □
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3. Formulas derive from logarithmic function and the function
gα (z)

Relations between Bernoulli numbers, Euler numbers, logarithmic function,
trigonometric functions are given in Berndt [1] in detailed.

In this section, we give relations between logarithms of functions involving
cosine function and cosecant function and Euler and Bernoulli numbers. Our
method is similar to that of in Berndt [1, Entry 12 and Entry 16 in Chapter 5].

Theorem 3.1. Let n ∈ N, and |z| < π
2 . Then we have

ln

(
g− 1

2
(1)

g− 1
2
(z)

)
=

∞∑
n=0

22n+1 (−1)
n+1

E2n+1

(2n+ 2)!
(z2n+2 − 1).

Proof. Our proof is same as that of Berndt [1]. Let |z| < π
2 , we define

ln
( z

cos z

)
− ln

(
1

cos 1

)
=

∫ z

1

(
t

cos t

)′
t

cos t

dt =

∫ z

1

dt

t
+

∫ z

1

(tan t) dt,

where

(f(t))
′
=

d

dt
{f(t)} .

By using the series expansion of the function tan t in the above equation, after
some elementary calculations, we obtain

(17) ln

(
cos 1

cos z

)
=

∞∑
n=0

22n+1 (−1)
n+1

E2n+1

(2n+ 1)!

(
z2n+2 − 1

2n+ 2

)
.

Besides that, when we put α = − 1
2 into (5), we obtain

(18) g− 1
2
(z) = cos z.

Combining (17) with (18), we arrive at the desired result. □

Theorem 3.2. Let n ∈ N, and 0 < |z| < π. Then we have

ln

(
g 1

2
(1)

zg 1
2
(z)

)
=

∞∑
n=0

22n (−1)
n+1

B2n

2n (2n)!
(z2n − 1).

Proof. Our proof is same as that of Berndt [1]. Let 0 < |z| < π, we define

ln (csc z)− ln (csc 1) =

∫ z

1

(
1

sin t

)′
1

sin t

dt = −
∫ z

1

(cot t) dt.

By using Taylor series of cot t in the above, after some elementary calculations,
we obtain

(19) ln
(csc z
csc 1

)
=

∞∑
n=0

22n (−1)
n+1

B2n

(2n)!

(
z2n − 1

2n

)
.
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On the other hand, when we put α = 1
2 into (5), we obtain

(20) g 1
2
(z) =

sin z

z
. □

Theorem 3.3. Let n ∈ N, and |z| < π
2 . Then we have

ln

(
g− 1

2

(
iz

2

))
=

∞∑
n=1

(
22n − 1

)
B2n

2n (2n)!
z2n.

Proof. Our proof is same as that of Berndt [1]. Let |z| < π
2 , we define

ln (cosh z) =

∫ z

0

(cosh t)
′

cosh t
dt =

∫ z

0

(tanh t) dt.

By using Taylor series of tanh t in the above, after some elementary calculations,
we obtain

ln (cosh z) =

∞∑
n=0

(
22n − 1

)
22nB2n

2n (2n)!
z2n.

When we put (18) into the above, we arrive at the desire result. □

Theorem 3.4. Let n ∈ N, and |z| < π
2 . Then we have

ln

(
z

2
g 1

2

(
iz

2

))
=

∞∑
n=0

B2n

2n (2n)!
z2n.

Proof. Our proof is same as that of Berndt [1]. Let |z| < π
2 , we define

ln (sinh z) =

∫ z

0

(sinh t)
′

sinh t
dt =

∫ z

0

(coth t) dt.

By using Taylor series of coth t in the above, after some elementary calculations,
we obtain

ln (sinh z) =

∞∑
n=0

22nB2n

2n (2n)!
z2n.

Substituting (20) into the above equation, after some elementary calculations,
we arrive at the desire result. □

3.1. Formulas derive from the function 1
gα(z)

Faà di Bruno’s formula gives an explicit formula for the mth derivative of
the composition g(f(t)). This formula is given by the following theorem.

Theorem 3.5 ([5], Faà di Bruno’s formula). If f and g are functions with a
sufficient number of derivatives, then

(21)
dm

dtm
g(f(t)) =

∑ m!

b1! · · · bm!
g(k)(f(t))

m∏
j=1

(
f (j)(t)

j!

)bj

,

where the sum is over all different solutions in nonnegative integers b1, . . . , bm
of b1 + 2b2 + · · ·+mbm = m, and k = b1 + · · ·+ bm.
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By using (6) and (21), Frappier [3] proved the following expression for the
α-Bernoulli type polynomials:

(22) Bn,α(x) =

(
x− 1

2

)n

+

[n2 ]∑
s=1

(−1)
s
Γ (2s+ 1)

(
n
2s

)
PN(s) (α)

24sΓ (s+ 1)
s∏

v=1
(α+ v)[

s
v ]

,

where

PN(s) (α)

=

s∏
v=1

(α+ v)[
s
v ]

s∑
r=1

∑
π(s,r)

(−1)
r+s

(r!) c (k1, . . . , ks)

s∏
v=1

(
Γ (α+ 1)

Γ (α+ v + 1)

)kv

is a polynomial in α of degree N (1) = 0 and

N (s) =

s∑
j=1

[
s

j

]
,

s = 2, 3, . . .. The notation π (s, r) means that the summation is extended
over all nonnegative integers k1, k2, . . . , ks such that k1 + 2k2 + · · · + sks = s,
k1 + k2 + · · ·+ ks = r, and

c (k1, k2, . . . , ks) :=

(
s!

k1!k2! · · · ks! (1!)k1 · · · (s!)ks

)
.

The polynomials PN(s) (α) appear in the MacLaurin expansion of the function
1

gα(z) , that is,

(23)
1

gα (z)
= 1 +

∞∑
s=1

PN(s) (α) z
2s

22sΓ (s+ 1)
s∏

v=1
(α+ v)[

s
v ]
.

For instances, P0(α) = 1, P1(α) = α+3, P2(α) = α2+8α+19 and P4(α) =
α4 + 17α3 + 117α2 + 379α+ 422.

By using (23) and (6), in the next theorem, we give an application which is
related to the polynomial PN(s)(α) and the α-Bernoulli type polynomials.

Theorem 3.6. Let s be a positive integer. Then we have

Bs,α(x) =
PN([ s2 ])

(α) (1 + (−1)
s
) Γ (s+ 1)

2(2[
s
2 ]+1)Γ

([
s
2

]
+ 1
) [ s2 ]∏
v=1

(α+ v)[
s
2v ]

+

(
x− 1

2

)s

(24)

+

s∑
k=1

PN([ k2 ])
(α) Γ (s+ 1)

(
1 + (−1)

k
) (

x− 1
2

)s−k

2(2[
k
2 ]+1)Γ

([
k
2

]
+ 1
)
Γ (s− k + 1)

[ k2 ]∏
v=1

(α+ v)[
k
2v ]

.
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Proof. We modified (23) as follows:

(25)
1

gα (z)
− 1 =

∞∑
s=1

PN([ s2 ])
(α) (1 + (−1)

s
) zs

2(2[
s
2 ]+1)Γ

([
s
2

]
+ 1
) [ s2 ]∏
v=1

(α+ v)[
s
2v ]

.

By (25) and the function e(x−
1
2 )z − 1, we define the following relation(

1

gα (z)
− 1

)(
e(x−

1
2 )z − 1

)
=

e(x−
1
2 )z

gα (z)
− e(x−

1
2 )z − 1

gα (z)
+ 1.

After some elementary calculations and using (6) in the above equation, we
obtain

∞∑
s=1

PN([ s2 ])
(α) (1 + (−1)

s
) zs

2(2[
s
2 ]+1)Γ

([
s
2

]
+ 1
) [ s2 ]∏
v=1

(α+ v)[
s
2v ]


( ∞∑

s=1

(
x− 1

2

)s
zs

s!

)

=

∞∑
s=1

Bs,α (x) zs

s!
−

∞∑
s=1

(
x− 1

2

)s
zs

s!
−

∞∑
s=1

PN([ s2 ])
(α) (1 + (−1)

s
) zs

22[
s
2 ]+1

[
s
2

]
!
[ s2 ]∏
v=1

(α+ v)[
s
2v ]

.

By using Cauchy product in the left side of the above equation yields

∞∑
s=1


s∑

k=1

PN([ k2 ])
(α)

(
1 + (−1)

k
) (

x− 1
2

)s−k

2(2[
k
2 ]+1)Γ

([
k
2

]
+ 1
)
Γ (s− k + 1)

[ k2 ]∏
v=1

(α+ v)[
k
2v ]

 zs

=

∞∑
s=1

Bs,α (x)−
(
x− 1

2

)s
Γ (s+ 1)

−
PN([ s2 ])

(α) (1 + (−1)
s
) zs

2(2[
s
2 ]+1)Γ

([
s
2

]
+ 1
) [ s2 ]∏
v=1

(α+ v)[
s
2v ]

 zs.

By comparing the coefficients of zs both sides of the above, we arrive at the
desired result. □

Remark 3.7. Proof of (24) is different from that of (22). Proof of (22) is related
to the Faa di Bruno formula.
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109 (2002), no. 3, 217–234. https://doi.org/10.2307/2695352

[6] N. Kilar and Y. Simsek, Formulas involving sums of powers, special numbers and poly-

nomials arising from p-adic integrals, trigonometric and generating functions, Publ.
Inst. Math. (Beograd) (N.S.) 108(122) (2020), 103–120. https://doi.org/10.2298/

pim2022103k

[7] T. Kim, Sums of powers of consecutive q-integers, Adv. Stud. Contemp. Math. (Kyung-
shang) 9 (2004), no. 1, 15–18.

[8] T. Kim, Symmetry p-adic invariant integral on Zp for Bernoulli and Euler polynomi-

als, J. Difference Equ. Appl. 14 (2008), no. 12, 1267–1277. https://doi.org/10.1080/
10236190801943220

[9] T. Kim, Note on the Euler numbers and polynomials, Adv. Stud. Contemp. Math.

(Kyungshang) 17 (2008), no. 2, 131–136.
[10] T. Kim, D. S. Kim, and J. Kwon, Analogues of Faulhaber’s formula for poly-Bernoulli

and type 2 poly-Bernoulli polynomials, Montes Taurus J. Pure Appl. Math. 3 (2021),
no. 1, 1–6.

[11] T. Kim, S.-H. Rim, and Y. Simsek, A note on the alternating sums of powers of consec-

utive q-integers, Adv. Stud. Contemp. Math. (Kyungshang) 13 (2006), no. 2, 159–164.
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