• Title/Summary/Keyword: surface representation

Search Result 337, Processing Time 0.02 seconds

Development of near field Acoustic Target Strength equations for polygonal plates and applications to underwater vehicles (근접장에서 다각 평판에 대한 표적강도 이론식 개발 및 수중함의 근거리 표적강도 해석)

  • Cho, Byung-Gu;Hong, Suk-Yoon;Kwon, Hyun-Wung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1062-1073
    • /
    • 2007
  • Acoustic Target Strength (TS) is a major parameter of the active sonar equation, which indicates the ratio of the radiated intensity from the source to the re-radiated intensity by a target. In developing a TS equation, it is assumed that the radiated pressure is known and the re-radiated intensity is unknown. This research provides a TS equation for polygonal plates, which is applicable to near field acoustics. In this research, Helmholtz-Kirchhoff formula is used as the primary equation for solving the re-radiated pressure field; the primary equation contains a surface (double) integral representation. The double integral representation can be reduced to a closed form, which involves only a line (single) integral representation of the boundary of the surface area by applying Stoke's theorem. Use of such line integral representations can reduce the cost of numerical calculation. Also Kirchhoff approximation is used to solve the surface values such as pressure and particle velocity. Finally, a generalized definition of Sonar Cross Section (SCS) that is applicable to near field is suggested. The TS equation for polygonal plates in near field is developed using the three prescribed statements; the redection to line integral representation, Kirchhoff approximation and a generalized definition of SCS. The equation developed in this research is applicable to near field, and therefore, no approximations are allowed except the Kirchhoff approximation. However, examinations with various types of models for reliability show that the equation has good performance in its applications. To analyze a general shape of model, a submarine type model was selected and successfully analyzed.

  • PDF

Representation and recognition of polyhedral objects in a single 2-D image using the signature technique (하나의 2차원 영상에서 표면의 signature를 이용한 다면체의 표현 및 인식 알고리즘)

  • 이부형;한헌수
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.2
    • /
    • pp.63-70
    • /
    • 1997
  • This paper proposes a new algorithm for recognizing polyhedral objects using a single 2-D image. It is base don a new representation scheme having two level hierarchey. In the lower level, geometrical features of each primitive surface are represented using their signatures and the variation of signature due to rotation is represented suing the rotation map. In the higher level, topological features are represented in the inter-surface description table(SDT). Based on the proposed representaton scheme, loer level database searched to find a matching primitive surface. The srotation map determines the degree of rotation as well as the matchness. If all surfaces in a test object find their matching primitive surfaces, its structural information is compared with the SDTs of object models. If primitive surfaces of a test object equal to tha tof certain model and satisfy inter-surfaces relationship in SDT, a test object is recognized as the model.

  • PDF

HYPERBOLIC SPINOR DARBOUX EQUATIONS OF SPACELIKE CURVES IN MINKOWSKI 3-SPACE

  • Balci, Yakup;Erisir, Tulay;Gungor, Mehmet Ali
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.4
    • /
    • pp.525-535
    • /
    • 2015
  • In this paper, we study on spinors with two hyperbolic components. Firstly, we express the hyperbolic spinor representation of a spacelike curve dened on an oriented (spacelike or time-like) surface in Minkowski space ${\mathbb{R}}^3_1$. Then, we obtain the relation between the hyperbolic spinor representation of the Frenet frame of the spacelike curve on oriented surface and Darboux frame of the surface on the same points. Finally, we give one example about these hyperbolic spinors.

A calculation method for finite depth free-surface green function

  • Liu, Yingyi;Iwashita, Hidetsugu;Hu, Changhong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.2
    • /
    • pp.375-389
    • /
    • 2015
  • An improved boundary element method is presented for numerical analysis of hydrodynamic behavior of marine structures. A new algorithm for numerical solution of the finite depth free-surface Green function in three dimensions is developed based on multiple series representations. The whole range of the key parameter R/h is divided into four regions, within which different representation is used to achieve fast convergence. The well-known epsilon algorithm is also adopted to accelerate the convergence. The critical convergence criteria for each representation are investigated and provided. The proposed method is validated by several well-documented benchmark problems.

Improved Transmission Path Visualization of Vibration Power Flow for Stiffened Plate Using Streamlines Representation (유선 표현법을 이용한 보강판의 진동파워흐름에 대한 개선된 전달경로 가시화)

  • Fawazi, Noor;Jeong, Un-Chang;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.7
    • /
    • pp.692-700
    • /
    • 2012
  • Vibration intensity has been used to localize vibration source of a vibrating system. Not only that, vibration intensity has also been used for structural diagnostic in identifying crack and mounted stiffeners. To clearly identify the location of vibration source and understand the changes of energy transmission path, clear flow visualization is required. Most of previous works used vectors to indicate the magnitude and direction of emerging vibration energy and transmission paths. However, due to the large surface area of a plate like-structure, clear transmission paths cannot be achieved using vector visualization. This becomes an issue when detail vector flow at all locations of the whole plate surface is required. In this study, streamlines visualization is used to clearly indicate the power flow transmission path at all plate surface. By using streamlines representation, not only clear transmission paths are obtained, but also improves the vector visualization which helps us to understand the changes of the energy flow especially for stiffened plates. In this study, vibration intensity computation is firstly compared to previous work to validate the vibration intensity computation. To clearly show the power flow transmission paths, streamlines representation is shown. This representation overcomes the unclear vector direction especially for stiffened plates. Different pattern of energy transmission path can be observed using streamlines representation for stiffened and unstiffened plate. The complex streamlines pattern can also be observed at high resonance frequencies which is unclear by using vector representation.

Representation Techniques for 4-Dimensional MR Images

  • Homma, Kazuhiro;Takenaka, Kenji;Nakai, Yoshihiko;Hirose, Takeshi
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.429-431
    • /
    • 2002
  • Metabolic analysis of biological tissues, the interventional radiology in MRT (Magnetic Resonance Treatment) and for clinical diagnoses, representation of 4-Dimensional (4D) structural information (x,y,z,t) of biological tissues is required. This paper discusses image representation techniques for those 4D MR Images. We have proposed an image reconstruction method for ultra-fast 3D MRI. It is based on image interpolation and prediction of un-acquired pictorial data in both of the real and the k-space (the acquisition domain in MRI). A 4D MR image is reconstructed from only two 3D MR images and acquired a few echo signals that are optimized by prediction of the tissue motion. This prediction can be done by the phase of acquired echo signal is proportioned to the tissue motion. On the other hand, reconstructed 4D MR images are represented as a 3D-movie by using computer graphics techniques. Rendered tissue surfaces and/or ROIs are displayed on a CRT monitor. It is represented in an arbitrary plane and/or rendered surface with their motion. As examples of the proposed representation techniques, the finger and the lung motion of healthy volunteers are demonstrated.

  • PDF

Design and Display of Solids Using CSG and Boundary Representation (CSG 표현과 경계 표현을 이용한 입체의 설계 및 화면표시)

  • Park, Kee-Hyun;Kyung, Chong-Min
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.2
    • /
    • pp.151-157
    • /
    • 1990
  • This paper presents a method for rapid wire frame drawing of the 3D objects represented by the CSG scheme. When the two CSG trees are combined into one, the intersection parts of the polygons constituting the object corresponds to each subtree are computed, and the boundary representation of the combined object is obtained according to the given combinational operator and stored in the root node. The boundary representation in the root node is used in the wireframe drawing of the object and later computation of boundary representation. Bezier surface is taken as one of the primitive object the scan-line algorithm is used, which subdivides each scan-line into the spans where no polygon is intersected, and renders each span with the CSG representation of the object.

  • PDF

Twisted product representation of reflected brownian motion in a cone

  • Kwon, Young-Mee
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.2
    • /
    • pp.471-480
    • /
    • 1996
  • Consider a strong Markov process $X^0$ that has continuous sample paths in the closed cone $\bar{G}$ in $R^d(d \geq 3)$ such that the process behaves like a ordinary Brownian motion in the interior of the cone, reflects instantaneously from the boundary of the cone and is absorbed at the vertex of the cone. It is shown that $X^0(t)$ has a representation $R(t) \ominus (t)$ where $R(t) \in [0, \infty)$ and $\ominus(t) \in S^{d-1}$, the surface of the unit ball.

  • PDF

Algorithms for iso-surface representation of res from finite element analysis of stress (유한요소법에 의한 응력 해석 결과의 등가면 표시 알고리즘)

  • Lee, Jae Young;Lee, Young-Jin
    • Journal of the Korea Computer Graphics Society
    • /
    • v.3 no.2
    • /
    • pp.85-97
    • /
    • 1997
  • This study is intended to propose methods of iso-surfaces representation in visualizing the stress distribution in 3-dimensional solids computed by finite element method, and to develop efficient algorithms related to iso-surfaces, and also to exploit the practical application to various data visualizations. This paper suggests practical methods of creating and rendering iso-surfaces, and methods of surface smoothing which removes local irregularity on the surface. Also devised in this study are various methods of rendering stress distribution with the aid of iso-surfaces. Their effectiveness and usefulness have been tested and verified through actual implementaion of a finite element analysis software and case studies using the software.

  • PDF