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ABSTRACT: An improved boundary element method is presented for numerical analysis of hydrodynamic behavior of 
marine structures. A new algorithm for numerical solution of the finite depth free-surface Green function in three 
dimensions is developed based on multiple series representations. The whole range of the key parameter R/h is divided 
into four regions, within which different representation is used to achieve fast convergence. The well-known epsilon 
algorithm is also adopted to accelerate the convergence. The critical convergence criteria for each representation are 
investigated and provided. The proposed method is validated by several well-documented benchmark problems.  
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INTRODUCTION 

Prediction of the hydrodynamic performance of a floating platform for ocean renewable energy has been an important issue 
in recent years. Although extensive researches have been carried out on offshore oil platforms, many new research topics arise 
in the development of offshore renewable energy platform due to the different cost requirement and the existence of wind 
turbines on the deck. The present research is aiming to develop a new and efficient analysis tool for such ocean renewable 
energy platforms. A Boundary Element Method (BEM) has been developed for calculation of hydrodynamic loads on the 
platform. This paper presents a new algorithm for numerical solution of the finite depth free-surface Green function in three 
dimensions which is used in the proposed method.  

Among various numerical methods nowadays, the boundary element method based on potential flow theory is one of the 
most popular methods due to its fast and efficient computation. Under the assumption that the fluid is incompressible, inviscid 
and irrotational, the BEM uses an appropriate Green function together with Green’s theorem to formulate the boundary integral 
equations with appropriate boundary conditions. Numerical algorithms of BEM include discretization of the body surface into 
some low-order elements or higher-order elements, distribution of the sources/dipoles on the submerged part of the hull surface, 
and calculation of the influence coefficients between arbitrary two sources/dipoles. In this method, the numerical solution of the 
free-surface Green function consumes a large portion of CPU time.  

An alternative approach for simple-shape bodies is the multipole expansion method which was first investigated by Ursell 
(1949) and Havelock (1955). These multipoles, generally contain two parts, i.e., the wave-free term which vanishes in the far-
field away from the structure, and the wave-source term which travels radially outwards at infinity (Liu et al., 2012). While the 
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wave-free term consists of some infinite series which are easy for evaluation, the wave-source term including the free-surface 
Green function is hard to be numerically calculated. Therefore, no matter which method is used, efficient numerical implemen-
tation of the free-surface Green function remains the major task (Newman, 1992).  

Numerous work has been done on the subject of the free-surface Green function. John (1949; 1950) first derived a variety of 
representations in both two and three dimensions with the consideration of both infinite and finite water depth. Infinite series 
expansion method for Green function under finite depth was presented by Wehausen and Laitone (1960). Thorne (1953), Mei 
(1983) and Linton and McIver (2001) also have important contribution. As to its numerical evaluation, several scholars have 
done many important works from 1980s, in which Newman (Newman, 1985; 1992) developed several efficient algorithms for 
both frequency domain and time domain Green functions in zero forward speed, which have been wildly used in this field. 
Pidcock (1985) derived several valuable expressions of the frequency domain Green function in finite depth, using series ex-
pansions. Linton (1999) suggested a novel set of representations for Green functions of Laplace's equation, which converges 
rapidly provided the optimal value of a parameter a is properly given. 

There are mainly three schemes for solution of Green functions: separation of the local and the far-field component and 
tabulation; numerical integration and Chebyshev approximation; utilization of series representations and acceleration. The 
first scheme usually needs to seek elaborate mathematical derivations. The second scheme requires computation of the prin-
cipal integral, which is usually not numerically stable by an adaptive integration method. In addition, it is difficult to choose 
the optimal subdivision of regions for Chebyshev approximation. The last scheme is much easier for programming, but 
requires different series representations in different regions with respect to the ratio R/h (R is the horizontal distance between 
source and field point, and h is the water depth). As to the authors' knowledge, there are still rooms to do research on improve-
ment of methods based on the first or the third scheme for evaluating finite-depth free surface Green function. John's eigen-
function expansion representation (John, 1950) converges rapidly except for relatively small R/h. Pidcock's representations 
(Pidcock, 1985) are invalid for large wave numbers when R/h is small, and it is difficult to find an appropriate convergence 
criterion for the summation of the series terms. Linton's rapidly convergent representation (Linton, 1999) converges in the 
whole domain of R/h. However, it needs careful selection of the parameter a according to the ratio R/h and the wave number v, 
which is not a trivial work.  

In this paper, we propose an efficient boundary element method that can be used to predict hydrodynamic property of an 
ocean renewable energy platform. The major contribution of this research is that a new algorithm for numerical solution method 
of the free surface Green function is developed. According to the ratio R/h, the computation domain is divided into four sub-
domains in which different series expansion scheme is used. The well-known epsilon algorithm is adopted to accelerate the 
convergence. A rapidly convergent expression scheme, which is based on the Chebyshev approximation method, is derived by 
substitution of its counterpart into Pidcock's representation. The optimal selection method of the parameter a is also given for 
small R/h in Linton's representation. In addition, the critical convergence criteria for each representation are also studied and 
some practical linear approximations are given. To remove the irregular frequencies in the wave interaction problem of surface-
piercing bodies, the partial extended boundary integral equation method originates from Lau and Hearn (1989) is applied. 
Several validation examples are presented to demonstrate the performance of the method. Finally, as an example of engineering 
application, numerical results by the proposed method are shown with the comparison to other numerical methods.  

SOLUTION OF THE BOUNDARY VALUE PROBLEMS 

Mixed-source/dipole BEM formulation 

Denote the coordinate system to be right-handed Cartesian coordinate system (x,y,z) with its x-y plane taken as the undis-
turbed sea level and the z-axis taken vertically upwards. Consider an incident wave transmitting along the direction positive, and 
a rigid body floating or being submerged in water of constant depth with a free surface. Under the usual assumptions of an 
inviscid, irrorational and incompressible flow, the problem can be described by a velocity potential 
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where φ0 stands for the incident wave potential, φ1~ φ6 stands for the radiation potential of six degrees, respectively, and φ7 
stands for the diffraction potential; ξj stands for the complex amplitude of the body motion in each of the six degrees of freedom; 
e-iωt  is a time-harmonic factor with a circular frequency ω. 

Application of Green’s theorem provides a mixed-source/dipole boundary integral equation for solving the values of the 
potential on the immersed body surface SB: 
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where P(x, y, z) and Q(ξ, η, ζ) represent the field point and the source point, respectively. The Green function G can be further 
decomposed into the following form in order to subtract its singularity: 

1G r G= + %
, 

where r is the Euclidean distance between the field point P and the source point Q. By assuming the potential to be constant on 
each flat quadrilateral/triangle panel and applying the collocation method at the centroid of each panel, Eq. (2) may be written in 
the discrete form  
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where N is the number of elements on the body surface, and 

1
d

n

mn Q
S

S S
r

= ∫∫  (4a) 

1
d

n

mn Q
S Q

D S
n r
∂

=
∂

⎛ ⎞
⎜ ⎟
⎝ ⎠∫∫  (4b) 

are the singular integrations of the source and dipole distributions over each panel, which are successfully evaluated by the 
analytical algorithm of Newman (1986).  

After solving the standard boundary value problems, various hydrodynamic quantities including added mass, wave damping 
coefficient and free-surface elevation, etc, may be obtained by direct integration. 

Free-surface green function in constant depth 

The free-surface Green function physically means the influence of an oscillating source at the source point to the potential at 
the field point, which must satisfy 
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and all the same boundary conditions except that on the body surface, where δ is the Dirac delta function.  
John (1950) has first deduced the original integral representation of Green function, whose three-dimensional finite water 

depth form can be written as 
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where the path of the contour integral in Eq. (6) passes below the pole at μ = k; r2 is the distance between the field point and the 
image of the source point with respect to the sea bottom, i.e.,  
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k is the positive root of the dispersion equation 

tanhk kh v= , (7a) 

and μm (m= 0,1,2…) satisfy the following equation 

tanm mh vμ μ = − , (7b) 

where μ0 is imaginary, μ0 = - ik, and μm (m= 1,2…) are positive. 
It should be noted that, Eq. (6) is not a convenient form for numerical evaluation of the Green function, since the 

oscillating and singular nature of its integrand brings too much trouble for direct integration, which also seems be of high 
expensive computation cost. One of the appropriate ways for doing the evaluation is to use the series or asymptotic expan-
sions. Therefore, an integrated strategy is proposed through our various numerical tests. With the definition domain of the 
parameter R/h being divided into four regions, a family of series expansions or asymptotic expansions are used. The details 
are given as follows. 

EVALUATION OF THE GREEN FUNCTION  

Region A: R/h ≥0.5 

In this first region, Newman (1985) suggested the use of eigenfunction expansion, which was first derived by John (1950) 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2
1

02 2

2 2

02 2
1

2 i cosh cosh

4 cos cosm
m m m

m m

k v
G k z h k h H kR

k v h v

v
z h h K R

v h v

π ζ

μ
μ μ ζ μ

μ

∞

=

−
= + +

− +

+
+ + +

+ −
∑

  (8) 

where ( )1
0H  is Hankel function of the first kind, ( ) ( ) ( ) ( )1

0 0 0iH kR J kR Y kR= + , J0 and Y0 are Bessel function of the first and 
second kind, respectively.  
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The above form avoids evaluation of Bessel function for complex arguments, however, nowadays by utilizing existing com-
puter subroutine for complex Bessel functions, Eq. (8) can be compressed into another alternative form 
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For kR >> 1, the non-oscillatory local flow component vanishes, only left with the propagating wave mode which may be 
written as (Mei, 1983) 
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where the asymptotic behavior of the Hankel function is used. By making use of this advantage, the computation speed will be 
improved.  

The number of terms required for a given accuracy of Eq. (9a) is proportional to the ratio h/R, thus [6h/R] is an appropriate 
number of terms for achieving 6D accuracy, as pointed out by Newman (1985). In our program, from the second term in Eq. 
(9a), a convergence condition is used, which guarantees the loop stop at the condition when absolute values of G, GR and Gz are 
all less than 1.e-8. Therefore, satisfactory results for 6D accuracy are achieved throughout the whole region with a maximum 
number of terms 10. When R/h < 1.0, comparatively more terms are needed to achieve 6D accuracy until the maximum number 
of terms is found at R/h =0.5. When R/h > 1.0, the terms needed for 6D accuracy are even less, one or two terms (except the 
zeroth term) are enough provided R/h is sufficient large.  

Region B: 0.05≤ R/h <0.5 

The eigenfunction expansion needs more terms to achieve the convergence as the parameter R/h becomes smaller. A non-
linear series accelerating method named epsilon algorithm is adopted in this region to increase the rate of convergence of the 
eigenfunction expansion sequence. This algorithm, also named as Wynn’s epsilon method, first discovered by Wynn (1956), is 
generally considered as an improved version of the similar Shank’s transformation.  

Denoting Sm to be the sum of the first m terms (m=1, 2, …, except m=0) in Eq. (9a), and m
kε  to be the transformation of Sm 

by epsilon algorithm, it comprises the following initialization and iterative phases: 
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Through our numerical test, with the acceleration of epsilon algorithm, only 10~50 terms are needed in this region for 5D 
accuracy (10 for R/h =0.5 and 50 for R/h =0.05), locally 6D accuracy can be achieved. To achieve at least 5D accuracy with 
the lowest cost of computation, we suggest the following formula for the number of the terms needed with respect to the para-
meter R/h 

88.89 54.45M R h= − + . (11) 
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Region C: 0.0005≤ R/h <0.05 

In region C, the eigenfunction expansion becomes almost useless even with simultaneous implementation of the epsilon 
algorithm. This urges us to search for another possible way of accelerating the convergence of the sequence. By utilizing the 
improved expansion proposed in Pidcock (1985) by subtracting a simpler series with same asymptotic form for large m, the 
Green function is formulated as 
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where K0 is modified Bessel function of the second kind; γ = 0.5772156649015328; *
mμ  is an approximation of μm when m is 

large, *
m m hμ π= . Eq. (12a) converges more quickly than Eq. (9a) for small R/h, nevertheless, a significant improvement in 

the convergence rate can still be made. Pidcock (1985) suggested the following formula to be used for l≥3 
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where λn are constants. However, the values of these constants have not been given in Pidcock (1985) and it seems not a trivial 
task. Here, we derive a convenient and useful representation for calculating Eq. (12d): 
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where am,n are Chebyshev coefficients corresponding to the integral defined in Eq. (7.5) of Newman (1992), in which the values 
of these coefficients are also listed. Actually, only up to m=4 and n=4 terms of the Chebyshev expansion in Eq. (13) are needed 
to obtain at least 6D accuracy. 

To further accelerate the computation, the epsilon algorithm described in section 4 is also utilized in this region. Based on 
our numerical test, with this improved Pidcock’s formula, 50~100 terms are needed in region C for 6D accuracy (50 for R/h = 
0.05 and 100 for R/h =0.0005). To achieve such an accuracy with the lowest cost of computation, we also suggest the following 
formula for the number of the terms needed with respect to the parameter R/h 

1010.10 100.50M R h= − + . (14) 

Region D: R/h <0.0005 

With the even less parameter R/h, Eq. (12a) will not be a good option since it will require a large number of terms (even 
thousands) to achieve a given accuracy. In Pidcock (1985), a special formula is also given for the case of R = 0, 
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where the symbols here are already defined in Eq. (12a)~Eq. (12f). However, as we can see, Eq. (15) is obtained based on the 
assumptions that for small values of μm R, K0(μm R) ~ - log(μm R/2) + γ, and Y0(μm R) ~ (2/π )[ log(μm R/2) + γ ]. These two 
assumptions require both small value for μm and R, which means that Eq. (15) is invalid if μm or R is of a bit large value (for 
instance, even for μm≥0.5, R≥0.1). Actually, according to our numerical check, Eq. (15) is best valid for μm < 0.5, R/h < 
0.0005 with an accuracy of 5D. This leads to our searching for other practical formulae for all relevant values of μm.  

The rapidly convergent representation for free-surface Green function proposed by Linton (1999) based on Ewald’s method 
(Ewald, 1921) is used in region D since its good convergence in the neighbourhood of R/h = 0: 
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Linton (1999) has proved that the contributions from Ln (n=2,3…) are much less than the desired accuracy for G, which 
therefore are neglected, leaving only the first term as  
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As we can see, the three integrals in Eq. (16b), Eq. (16c) and Eq. (16d) are not easy to compute. However, by developing a 
global adaptive Gauss-Kronrod quadrature subroutine, these integrals are well computed accurately (Liu, 2012). Numerical 
integration still causes large time consumption, an improvement for the calculation will be the utilization of series expansion in 
some local areas. The following formula suggested by Linton (1999) is used for Eq. (16b) whenever R/a≤0.5: 
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while the following formula is used for Eq. (16c) whenever R/a≤1.0: 
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Both Eq. (17a) and Eq. (17b) can be derived through the Taylor expansion, variable substitution, integration term by term 
analytically, and substitution with the definition of series expansion of the exponential integral. Especially, for the extreme case 
when R/h = 0, the following equations is recommended (Linton, 1999):  
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where the two kinds of exponential functions are defined as the same in Abramowitz and Stegun (1965). Eq. (18a) and Eq. 
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(18b) can be obtained through the substitution of the integration definition of the exponential integral with the integrals in Eq. 
(16b) and Eq. (16c).  

However, it should be noted that, no matter whether the integral form (Eq. (16b) and Eq. (16c)) or the series expansion form 
(Eq. (17a) and Eq. (17b)) is used, the computation of the coefficients for Λ0 and Λm will not lead to an accurate result, even will 
not converge, if an inappropriate value of the parameter a is chosen. Unfortunately, the selection of parameter a is not given in 
Linton (1999). Indeed, the optimal value for a varies with two factors, the wave number v and the ratio of horizontal distance to 
water depth R/h, which leads to difficulty of programming. In region D, nevertheless, due to the narrow variation of the factor 
R/h, the contribution from R/h can be neglected. Therefore, by polynomial approximation, the following formulae are recom-
mended for the optimal selection of a with only the variation of factor v 

c
a

vh
= ,  (19a) 

where 

3 23324.2 258.89 8.3958 1.3208c v v v= − + + , when [ ]0,0.02v ∈ , (19b) 

3 2-30.303 -2.8138 2.7740 0.05052c v v v= + + , when [ ]0.02,0.1v ∈ , (19c) 

3 21.5699 -2.5075 1.8316 0.10770c v v v= + + , when [ ]0.1,1.0v ∈ , (19d) 

3 2-0.000069641 -0.0017082 0.45566 0.80551c v v v= + + , when [ ]1.0, 25.0v ∈ . (19e) 

By utilizing this Linton’s formula with the optimal selection of parameter a as described above, generally less than 10 terms 
are sufficient throughout region D to achieve at least 6D accuracy.  

NUMERICAL RESULTS AND DISCUSSION 

Validation of the evaluation of Green function  

In this section, numerical computations are performed to validate the proposed method of free-surface Green function 
calculation. The algorithm of infinite water depth Green function described in Kashiwagi et al (2003) and the algorithm of finite 
water depth Green function described in Newman (1985) are adopted to validate the present method.  

Fig. 1 shows the variation of the real part of Green function and its derivatives over R/h for a relatively small wave number. 
The horizontal distance R is divided by the finite depth h as well for infinite depth Green function for the purpose of comparison. 
The three sub-figures Figs. 1(a)~(c) at the left side are the local magnificent for small R/h of the right-side sub-figures. It is 
observed that for both small and large value of R/h, the present results coincide very well with the method of finite depth Green 
function by Newman (1985). In addition, under present location of the source point and the field point, finite depth effect can be 
observed for the real part of Green function, while for the derivatives they can not be observed, by comparison with results of 
the infinite depth Green function. 
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(a)                                             (b)   

 

  
(c)                                             (d)   

 

  
                       (e)                                           (f)   

Fig. 1 Comparison of Green function and its derivatives for a small wave number 
(v = 0.005 m-1, h = 2.0 m, ζ = -0.2 m, z = -0.3 m). 

 
Fig. 2 shows the variation of the real part of Green function and its derivatives over R/h for a relatively large wave number. 

It is also observed that for both small and large value of R/h, the present results obtain high agreement with the results of 
Newman (1985). In addition, in this case, finite depth effect can be observed obviously for the real part of G and its z-derivative 
in the local magnified sub-figures, while for the x-derivative they can not be observed. 
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                      (a)                                            (b)   

 
                      (c)                                             (d)   

 
      (e)                                              (f)   

Fig. 2 Comparison of Green function and its derivatives for a large wave number 
(v = 2.0 m-1, h = 1.0 m, ζ = -0.1 m, z = 0.0 m). 

Numerical example for a circular dock in finite water depth 

A circular dock is used as the numerical example to validate the present numerical method in hydrodynamic computation. 
The hull surface is meshed by 40×20+40×20 constant panels (40 in annular and 20 in both radial and draft directions), with 
additional 40×20 panels (40 in annular and 20 in radial) in the waterplane to suppress the irregular frequencies, in totally 2400 
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elements. For convergence test, another mesh in 600 panels is also used, with a half decrease in each direction. Both of meshes 
are shown in Fig. 3. The radius R is a, the ratio of draft D to the radius and the ratio of finite depth to the radius are 0.5 and 0.75, 
respectively. The finite water depth h is a. The analytical eigenfunction method of Garret (1971) is adopted to validate the pre-
sent model. Non-dimensional numerical results are shown in Fig. 4 and Fig. 5.  

 

 
  (a) Mesh of dock in 600 panels.         (b) Mesh of dock in 2400 panels. 

Fig. 3 Mesh for the circular dock. 
 
Fig. 4 shows comparison of modulus of complex exciting wave forces against dimensionless radius ka. It is observed that 

for both the horizontal force, the vertical force, and the torque, the present results agree well with the analytical results obtained 
by eigenfunction method. The comparison also show that, with the increase of number of panels, results of present numerical 
method approach that by analytical method.  

 

 
          (a) Horizontal exciting force.                          (b) Vertical exciting force. 

 

 
(c) Exciting torque. 

Fig. 4 Modulus of the complex exciting wave forces of a circular dock. 
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Fig. 5 shows computation of the hydrodynamic quantities and effect of the irregular freque- ncies. All the quantities are 
normalized by the volume of submerged part of dock, i.e., V = Dπa2. In the neighborhood of the irregular frequencies, the 
“Unremoved” method has sharp leap and decline within small intervals, leading to ignorable numerical errors. While the 
“Removed” method based on the modified boundary integral equation, has been smooth in the entire neighborhood. 

 

 
               (a) Surge added mass.                           (b) Heave added mass. 

 
               (c) Surge damping.                                (d) Heave damping. 

Fig. 5 Added mass and damping coefficient of a circular dock. 
 
Figs. 6~8 show a variety of validation results with the variation of water depth and draft of the dock. The panel number used 

in the following computation is 600 for all the cases. The rotation center of torque is defined at the center of bottom of the dock, 
as the same definition in Garret (1971). It is observed that for both the shallow and the deep water, the present results coincide 
with the analytical results of Garret (1971). In addition, with the change of the draft, the wave forces varies obviously, while the 
agreement between the results of present method and analytical method does not change. 

 

 
                (a) h/a = 0.75.                                     (b) h/a = 1.5. 

Fig. 6 Modulus of the horizontal exciting wave force on the circular dock. 
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               (a) h/a = 0.75.                                   (b) h/a = 1.5. 

Fig. 7 Modulus of the vertical exciting wave force on the circular dock. 
 

 
(a) h/a = 0.75.                                   (b) h/a = 1.5. 
Fig. 8 Modulus of the exciting wave torque on the circular dock. 

 
Fig. 9 shows the computational time (unit: sec.) of the numerical example against various numbers of discretization panels. 

The computation is implemented with a single 2.2 GHz Intel processor, on a 64-bit Windows operating system. The com-
putation is carried out in double precision. For the solution of the resulting matrix system, the GMRES method is adopted with 
an iteration tolerance of 10-5. From Fig. 9, it can be seen that the total computing time is nearly quadratic with increase of the 
number of panels. A general computation of a 5000-unknowns problem requires approximately 400 seconds, which facilitates 
the hydrodynamic computation of practical marine structures. 

 

 
Fig. 9 Computational time (s) of the numerical example against panel number. 
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CONCLUSIONS 

In this paper, an improved boundary element method for solving wave-body interaction problems in finite water depth is 
presented. The newly developed numerical algorithm for evaluation of the Green function and its derivatives is described in 
detail. The major advantage of the algorithm is its computational simplicity. The accuracy of algorithm is validated by compari-
son of Green function and its derivatives with the Chebyshev polynomial approximated method (Newman, 1985). Numerical 
simulations by using the proposed method are carried out on a circular dock in finite water depth. The irregular frequency phe-
nomenon and the effect of the panel number are discussed.  
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