References
- F. Antonuccio, Hyperbolic Numbers and the Dirac Spinor, arXiv:hepth/9812036v1, 1998.
- M. Carmeli, Group Theory and General Relativity, Representations of the Lorentz Group and Their Applications to the Gravitational Field. McGraw-Hill, New York, Imperial College Press, 1977.
- E. Cartan, The theory of spinors. Dover, New York, 1981.
- G. F. T. Del Castillo, Spinors in Four-Dimensional Spaces, Springer New York Dordrecht Heidelberg London, 2009.
- G. F. T. Del Castillo, G. S. Barrales, Spinor formulation of the dierential geometry of curves. Revista Colombiana de Matematicas 38 (2004), 27-34.
- P. A. M. Dirac, Spinors in Hilbert Space. Plenum Press, 1974.
- P. A. M. Dirac, The quantum theory of the electron, Proceedings of the Royal Society of London A117: JSTOR 94981, (1928), 610-624. https://doi.org/10.1098/rspa.1928.0023
- M. P. Do Carmo, Differential Geometry of Curves and Surfaces. Prentice Hall, Englewood Cliffs, NJ, 1976.
- T. Erisir, M. A. Gungor, and M. Tosun, Geometry of the Hyperbolic Spinors Corresponding to Alternative Frame, Adv. in Appl. Clifford Algebr. 25 (2015), no. 4, 799-810. https://doi.org/10.1007/s00006-015-0552-y
- T. Ikawa, On curves and submanifolds in an indefinite-Riemannian manifold. Tsukuba J. Math. 9 (1985), no. 2, 353-371. https://doi.org/10.21099/tkbjm/1496160296
- Z. Ketenci, T. Erisir, and M. A. Gungor, Spinor Equations of Curves in Minkowski Space, V. Congress of the Turkic World Mathematicians, Kyrgyzstan, June 05-07, 2014.
- I. Kisi and M. Tosun, Spinor Darboux Equations of Curves in Euclidean 3-Space. Math. Morav. 19 (2015), no. 1, 87-93. https://doi.org/10.5937/MatMor1501087K
- P. Kustaanheimo and E. Stiefel, Perturbation Theory of Kepler Motion Based on Spinor Regularization, J. Reine Angew. Math. 218 (1965), 204-219.
- B. W. Montague, Elemenatry spinor algebra for polarized beams in strage rings, Particle Accelerators 11 (1981), 219-231.
- B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.
- M. Ozdemir and A. A. Ergin, Spacelike Darboux curves in Minkowski 3-space. Differ. Geom. Dyn. Syst. 9 (2007), 131-137.
- W. Pauli, Zur Quantenmechanik des magnetischen Elektrons, Zeitschrift fr Physik 43 (9-10) (1927), 601-632. https://doi.org/10.1007/BF01397326
- D. H. Sattinger and O. L. Weaver, Lie Groups and Algebras with Applications to Physics, Geometry and Mechanics. Springer-Verlag, New York, 1986.
- S. I. Tomonaga, The Quantity Which Is Neither Vector nor Tensor, The story of spin, University of Chicago Press, p. 129, ISBN 0-226-80794-0, 1998.
- D. Unal, I. Kisi and M. Tosun, Spinor Bishop Equation of Curves in Euclidean 3-Space. Adv. in Appl. Clifford Algebr. 23 (2013), no. 3, 757-765. https://doi.org/10.1007/s00006-013-0390-8
- I. M. Yaglom, A Simple non-Euclidean Geometry and its Physical Basis. Springer-Verlag, New-York, 1979.
Cited by
- The Hyperbolic Spinor Representation of Transformations in $$\mathbb {R}_1^3$$R13 by Means of Split Quaternions vol.28, pp.1, 2018, https://doi.org/10.1007/s00006-018-0844-0
- Geometry of the Hyperbolic Spinors Corresponding to Alternative Frame vol.25, pp.4, 2015, https://doi.org/10.1007/s00006-015-0552-y
- On Fibonacci spinors vol.17, pp.4, 2015, https://doi.org/10.1142/s0219887820500656
- On spinor construction of Bertrand curves vol.6, pp.4, 2015, https://doi.org/10.3934/math.2021213