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TWISTED PRODUCT REPRESENTATION OF
REFLECTED BROWNIAN MOTION IN A CONE

YOUNGMEE KwWON

ABSTRACT. Consider a strong Markov process X° that has continuous
sample paths in the closed cone G in R%(d > 3) such that the process
behaves like a ordinary Brownian motion in the interior of the cone,
reflects instantaneously from the boundary of the cone and is absorbed
at the vertex of the cone.

1t is shown that X°(t) has a representation R(1)©(t) where R(t) €
[0,00) and ©(t) € 89—, the surface of the unit ball.

1. Introduction

Let Q be a subdomain of the unit sphere $¢~! in R4(d > 3) such
that §4~1 \ © is nonempty and the boundary 9Q of  in S¢! is C3.
We may assume (0,...,0,—1) € . Define the open cone G = {rw : r >
0,w € 2}. The closure and the boundary of G will be denoted by G
and OG, respectively. The origin {0} is the vertex of the cone. Let v
be a C? d-dimensional vector field on dG \ {0}, such that v is constant
on rays of the cone, i.e., for each w € Q, v(rw) = v(w) for all r > 0.
We assume that the component of v in the inward normal direction
to 0G \ {0} is positive. Indeed, without any loss of generality, by the
scaling and continuity of v, we may and do assume that v-n = 1 on
0G \ {0}, where n is the inward unit normal on dG \ {0}. Let v, denote
the component of v in the direction of the radial unit vector e, in R¢,
and define the vector q = v — v,.e, — n. We assume v, € C3*(9G \ {0})
and q € C*(8G \ {0}) as in [KW].
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We consider a strong Markov process XY that has continuous sample
paths in G and the following three properties. We refer this process as
reflected Brownian motion(abbreviated RBM) with reflection v absorbed
at 0

(1.1) The state space is the (closed cone) G and the process behaves
in the interior of the cone like ordinary Brownian motion.

(1.2) The process reflects instantaneously from the smooth part G \
{0} of the boundary of the cone, the direction of reflection being
given by the vector field v.

(1.3) XY is absorbed at the origin.

The question of existence and uniqueness (in law) of the process XY is
established with the submartingale formulation by Kwon and Williams
[KW]. In this paper, we give an alternative representation for X as a
“twisted product” such that X°(¢#) = R(#)©(t) where R(t) € [0, 00) and
O(t) € Q ¢ S41. This is similar to the skew product construction of
Ito and Mckean ([IM Sec.7.15-7.17]) and twisted product representation
of Brownian motion with polar drift by R.J.Williains ([W]). In [W], the
twisted product representation provides intuition of the results on the
behaviors of a diffusion process with generator L = %A + (‘27“)7'1/1(9)%
near the origin. In our case, by [KW], we know a lot about behaviors of
X near the origin already. But we expect it gives useful bounds for the
local time of the boundary for some special case of reflection, for example,
where X never hits 0 once it starts from z # 0. Moreover with bounds
for local time, we may expect we can get some results for harmonic
functions u in a cone with certain boundary conditions (% = f) since
the key for representation of harmonic function via diffusions is bounds
for the local time for the boundary.

The precise mathematical formulation for (1.1)-(1.3) is given in precise
mathematical terms as the question of existence and uniqueness of a so-
lution of the following submartingale problem associated with (G, v)with
absorption at the vertex in (2.1)-(2.3) (see the section 2 of [KW]). For
this, let Cz denote the set of continuous function w : [0,00) — G en-
dowed with the topology of uniform convergence on compact subsets in
[0,00). For each t > 0, let M; = o{w(s) : 0 < s < t} denote the o-
algebra of subsets of Cw generated by the coordinate maps w — w(s) €
Réfor0<s<tandlet M = Viso Mt = o{w(t) : ) <t < oo}. Equiva-
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lently, My(resp. M) is the Borel o-algebra associated with the topology
of uniform convergence on [0,¢] (resp. compact subsets of [0,00)). For
each domain D C R? and n > 0, C"(D) denotes the set of functions
f: D — R that are n-times continuously differentiable in D. The set of
functions in C™(D) whose partial derivatives up to and including those
of order n are bounded in D is denoted by C;*(D). The symbol C2(D)
denotes the set of functions in C*(D) that have compact supports in D.
The same notations will be used with R! x §4~1 in place of R?.
The Laplace operator on R? \ {0} is given in polar coordinates by

(1) A—a—2+(d—1)r"ﬁ+r—2a
~ or? or se
where Aga-1 is the Laplace-Beltrami operator on 59!, The set $¢~! is
endowed with the topology induced from R?¢. The gradient operator is
given by
J

(2) V= 5;er+7'_led—1

where e, is the unit vector in the radial direction and Vge-: is the
tangential gradient operator on §¢~!.

2. twisted product representation

By [KW], X° satisfying (1.1)-(1.3) is characterized (in law) as the
unique process that has continuous paths in G and associated probability
measure on (Cg, M) {P?} (one each starting point = € G) satisfying the
following three properties.

(2.1) PAX°(0)=12)=1

(2.2) Define 7p = inf{t > 0: X°(¢) = 0}. For eachf € C¥(G) that
satisfies v-Vf >0 on 0G\ {0}, we have

FX(tAm)) - %/0 lro AF(X0(s))ds
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is a P)-submartingale with respect ¥ = 0{X%(s):0 < s <t} .
(2.3) PAX°t) =0 forall t>rg):=1.

In this section, we give a twisted product representation for X° similar
to [W]. We will have two processes R(t), ©(t) for X° such that R(t)
is some time change of one-dimensional log-like process and ©(t) is a
time change of reflected Brownian motion X on  with the reflection
n + q. The way we get the representation is that we project X by
the stereographic projection with the pole (0,...,0,-1). Then we get a
reflected diffusion Z in R?~! which is equivalent to X. By looking Z
downstairs, we get the right semimartingale for X.

Suppose (5,0) is a fixed measurable space on which is defined a stan-
dard one dimensional Brownian motion B and an independent reflected
Brownian motion X on (I with the reflection n + q. That is, X is
the diffusion such that the density p(t,z,y) of X satisfies %Itz(t,x, y) =
ANga-1p(t,z,y) for z,y € Q and Vge-1p(t,z,y) - (n +q) = 0 for z € 9.
The existence of p(t,z,y) is well known ([GT Sec.5.7]).

Let p be the streographic projection from Q to R4~ with the pole
(0,...,0,—1) Then p is smooth and also p~* by (0,...,0,-1)¢ Q. Let

Z(t) = p(X(t)). Then Z(t) is a reflected diffusion on a C? compact
set D = p(Q) C R4 with the reflection v/ = p.(n + q). That is, for
z € 8D, v'(z) is the C? vector field projected from n+ q(p~'(z)) in the
sense that for any C? function f, Vgi-1f - v/(z) = Vga-r(fop)- (n +
q)(p~!(z)). Moreover v' - n' = 1 where n’ is the unit inward normal of
D by v-n = 1. Hence by Lion and Snitzman ([LS]). we get the following.

(3) Z(t)=/0 o(Z(s))dB(3)+/0 b(Z(s))ds+j£ v'(Z(s))dL z(s)

where B is a (d-1)-dimensional Brownian motion and L z(t) = fo 1(z(s)aD)
dLz(s) which is finite a.s.. Now we get ¢ and b explicitly. For z =
(21, ...,2%) € R%, let p(z) = |z|. Then for z € D, Aga-1 at p =), that
1s the Laplacian streographic projection is

(d—3)(1+4p%)p 8

“’” VA pacs — 9.
2 Op

Agar = (—F2
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The generator of X is -LI,-A si—1 same as Z in the sense that for z € D,
p~(z) =% and g € C?, lim,_q E'ng(tzl—y(z) = lim,_. E’y(p(X(t)) 9(%)
= $Aga-19(p(2)). Hence by (3) L =1 Z (aaf),J g+ b D must
be 1 of the Laplacian projection from §¢~1 to R4, Therefore for z € D
p = |zi,

(®) (AT = Loy(a)

and "
d—3)(1+ |z]*)lz 6 .
=5+l 2 -Socom,

Let L be the boundary process related to X, equivalent to Lz in the
sense that L(t) = [ 1 z(weomdL(s) = fy L(z,eomdLz(s) = Lz(t).
Consider 1-dimensional log-like process Y (#) such that

(5) Y(t)= B'(t) + @—;?—)wr/o v (X (8))dL(s)

where B(t) is a 1-dimensional Brownian motion independent of (d-1)-
dimensional Brownian motion in (3). Now we show that the process X°
in (2.1)-(2.3) in G before 79 is a skew product of (Y(t), Z(t)), that is,
XO(t) = (Y(7(2)), Z(4(t))) where 4(t) is a time change.

By the definition, (Y, X ) is a diffusion with continuous paths in R! xQ
and (Y,X) = (Y,p~1(Z)). Now we compute the generator of (Y, X).
First, for g; € C2(R'), we apply Y (%) in (5), then by the Ito’s formular,
we have

(6)

91(Y(?)) = /0 g;(Y(s))dBl(3)+/ (d-2) ,

91(Y (s))ds

t

¥ /0 g;(y(s))v,(X(s))di(s)+§ /( g1(Y(s))ds

= martingale + % /0 [:—?ﬂgl(Y(s)) +(d - 2)%g1(Y(s))]ds

b / $gl<Y(s)>vr<X<s>>di<s>.
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Now for g2 € C*(Q), let g = go0p~!, then g € C*(D) and g,(X(¢)) =
g2(p~1(Z(t)) = g(Z(t)). Recall Z(t) in (4). Then, by the Ito’s formular,

7
62X (1)) = 9(Z / V ga-1g - o(Z(s))dB(s)

+/0 Vpa-1g - V' (2(s)) dLZ(s)+/O Lg(Z(s))ds

where Vga—1g-v'(Z(5)) = Vga-1g2 - (n + q)(X(s)) and L is in (4) such
that

Lg(z) = %ASd—lg(p op ' (z)) = %Asa—un(p‘l(x))-

Hence

t
(8) g2(X(t)) = martingale + -;—/ Aga-192(X(s))ds
0

+/0 Asa_192 - (n+ q)(X(s))dL(s).

By (6) and (7), ¢1(Y(t)) and go(X(t)) are semimartingales. Therefore
by intergration by parts, we have

(9) 91(Y ())g2(X (1))
= /(;tgl(Y(s))dgg(X(S)) + /Otgz()?(s))dg&(Y(s))
_ / (Y ()(Tsiorgs - (n+a)(K(s))dE(s)
N DL TR (T
+ [ KO3l (s) + (- 2) e (¥ (s))lds
+ [ O a6l KDL

t / 92(X())gl (¥ (s))bB(s)
=I4+II4+III4+1IV+V.
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Now V is a martingale and let

1 0 8
(10) A=5lBsis+ g+ (d-2)5 ]

then 11 + IIT = [} Agi(Y (s))g2(X(s))ds and (9) is
(11) g1(Y(£)g2(X (1))

_ / Agi(Y(5))g2(X (s))

+ /(; (%7 Aga-191(Y(8))g2(X(3)) - (vr, n 4+ q)dL(s)

+ martingale.

Let Q,; be the probability measure on (S,G) associated with (Y, X)
starting from (y,#) € R* x Q. Next define A(t) = fot e?Y()ds for all
t>0and A = fooo e2Y(9)ds. A~ denotes the functional inverse of A
with A71(#) = co if t > Aw. For each t € [0, A ), define

R(t) =AM o) = X(A(1)).
Further define R(¢) = 0 for all t > A,,. Now let
(12) X* = (R(t),0(t)).

Then X*(t) has continuous paths in G absorbed at the origin. Thus it
suffices to verify that property (2.2) of the chracterization of X holds
for X* for each starting point z € G \ {0}.

THEOREM 2.1. X* = (R,0©) in (12) is a representation for X°, i.e.,
X* is equivalent in law to X°.

PROOF. To verify the property (2.2), it is enough to show that for
each z € G{0}, 0 < ¢ < 1 and for f € C%(G) such that Vgef-v >0,

(13 A -5 [ bnf X s Fi t20)
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is a @y z-submartingale, where (y,z) = (In|z|,z/|z]) € R* x Q, 7* =
inf{s > 0:|X*(s)| <e or |X*(s)|>e1}and Ff = o{X*(s):0<
s <t}. Given 0 < e < 1 and f(r,8) € C%(G), let

=inf{s >0:Y(s) <lne, or Y(s)>Ine™'}

and define g € C?(R! x Q) by g(y,%) = f(e¥, %) for all (y,%) € R* x Q.
Moreover it is enough to show (13) for f of the type f(r,8) = fi(r)g2(6)
such that f; € C2([0,00)) and g, € C*(Q2). Define ¢;(y) = fi(e¥), then
0N € CCZ(RI) and

X)) = A(R®)g2(0()) = fi(e¥ AT D)g(X(A71(2)))
= g1(Y (A7 ()))ga( X (A71(D))).

Then by (11) and Doob’s stopping theorem since EQv#(7Y) < oo, we
have

(14) ~

g1(Y (A7) A 7 )ga(R (A7 (1) A7)

AN ArY _
= martingale +/0 Ag1(Y(3))g2(X (8))ds
L(t)Ar, ~ N

+ (502 Vo= (V()2(X(5) (o1 + )E(5),
Here
(15)

2
A(02@) = 55 + (A= D5+ Bsint I (V)oa(2)
= e vl asipen)

since if we let r = ¥,

5o e = (NG = A,
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02 9. 0 0
5 ‘a—y[gfl(ey)]ey + [Efl(fy)]ey,
2
= 2 e s L pee,

And 5 9
('6—y,VSd—1)91(y)g2(5) = (Cygfl(ey)vvsd—lgz(i))‘

Hence

e+ Vet fugal(e, 2) - (e, )

= r[Vgi(f1g2)(e?,T)] - v(e?, &)
= o fi(r) e 4 2 Vseerg2(@)) - (4 @) = 1V e frga - VI(r, 2).
Yy T
Hence if Vf1g, - v > 0, we have

(16) G(Y (AT ) A TY g2 (X (AT ) A TY))
LA, i
_/0 Ag1(Y(s))g2(X (s))ds

is a nyi—submartingale for each (y,&) € R' x Q where A is in (10).
Also, A7Y(t) A7Y = A7'(t A 7?). By substituting the above in (15)
and changing the variable of integration there to u = A(s) (so that
du = e2Y(9)ds), we obtain

{fi(exp(Y (AT ))go(X (ATt A 1))

‘/0 § 5 A re ilezp(Y (A7 ()ga(X(A7 @), Ganiqinne 1t 0}

is a @)y z-submartingale since Aps = ar —J,-gd—r:-!-2 2 + 2 Age-1. Recalling
the definition of X* and noting that F/, . C QA 1(tars), We have (13)
for f € C%(G) such that Vf-v > 0 and f(r,8) = fi(r)g2(8) where

€ C%([0,0)), g2 € C*(). Now by approximation, (13) holds for all
f € C*(G) such that V£ v > 0. Hence we are done.
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REMARK 1. In [W], Williams showed properties of sample paths of
X°, a diffusion related to the operator that has the singular point at 0
by the twist product representation. Here in a similar way we may show
properties of sample paths of X?, reflected Brownian motion using our
twist product representation.
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