• Title/Summary/Keyword: surface rendering

Search Result 211, Processing Time 0.022 seconds

Construction and Rendering of Trimmed Blending Surfaces with Sharp Features on a GPU

  • Ko, Dae-Hyun;Lee, Ji-Eun;Lim, Seong-Jae;Yoon, Seung-Hyun
    • ETRI Journal
    • /
    • v.33 no.1
    • /
    • pp.89-99
    • /
    • 2011
  • We construct surfaces with darts, creases, and corners by blending different types of local geometries. We also render these surfaces efficiently using programmable graphics hardware. Points on the blending surface are evaluated using simplified computation which can easily be performed on a graphics processing unit. Results show an eighteen-fold to twenty-fold increase in rendering speed over a CPU version. We also demonstrate how these surfaces can be trimmed using textures.

Surface Model and Scattering Analysis for Realistic Game Character

  • Kim, Seongdong;Lee, Myounjae
    • Journal of Korea Game Society
    • /
    • v.21 no.4
    • /
    • pp.109-116
    • /
    • 2021
  • In this paper, we considered that recently 3D game characters have been almost alike realistic expression because of a great mathematical computation and efficient techniques on GPU hardware. We presented the rendering technique and analysis for 3D game characters to simulate and render mathematical approach model from recent researches to perform the game engine for the surface reflection of lighting model. We compare our approach with the existing variant rendering techniques here using Open GL shader language on game engine. The experimental result will be provided the view-dependent visual appearance of variant and effective modeling characters for realistic expression using existing methods on the GPU for effective simulations and rendering process. Since there are many operations that are used redundantly while performing mathematical operations, the necessary functions and requirements have been to compute in advance.

Selective Rendering of Specific Volume using a Distance Transform and Data Intermixing Method for Multiple Volumes (거리변환을 통한 특정 볼륨의 선택적 렌더링과 다중 볼륨을 위한 데이타 혼합방법)

  • Hong, Helen;Kim, Myoung-Hee
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.7
    • /
    • pp.629-638
    • /
    • 2000
  • The main difference between mono-volume rendering and multi-volume rendering is data intermixing. In this paper, we first propose a selective rendering method for fast visualizing specific volume according to the surface level and then present data intermixing method for multiple volumes. The selective rendering method is to generate distance transformed volume using a distance transform to determine the minimum distance to the nearest interesting part and then render it. The data intermixing method for multiple volumes is to combine several volumes using intensity weighted intermixing method, opacity weighted intermixing method, opacity weighted intermixing method with depth information and then render it. We show the results of selective rendering of left ventricle and right ventricle generated from EBCT cardiac images and of data intermixing for combining original volume and left ventricular volume or right ventricular volume. Our method offers a visualization technique of specific volume according to the surface level and an acceleration technique using a distance transformed volume and the effective visual output and relation of multiple images using three different intermixing methods in three-dimensional space.

  • PDF

Evaluation of accuracy of 3D reconstruction images using multi-detector CT and cone-beam CT

  • Kim, Mi-Ja;Huh, Kyung-Hoe;YI, Won-Jin;Heo, Min-Suk;Lee, Sam-Sun;Choi, Soon-Chul
    • Imaging Science in Dentistry
    • /
    • v.42 no.1
    • /
    • pp.25-33
    • /
    • 2012
  • Purpose : This study was performed to determine the accuracy of linear measurements on three-dimensional (3D) images using multi-detector computed tomography (MDCT) and cone-beam computed tomography (CBCT). Materials and Methods : MDCT and CBCT were performed using 24 dry skulls. Twenty-one measurements were taken on the dry skulls using digital caliper. Both types of CT data were imported into OnDemand software and identification of landmarks on the 3D surface rendering images and calculation of linear measurements were performed. Reproducibility of the measurements was assessed using repeated measures ANOVA and ICC, and the measurements were statistically compared using a Student t-test. Results : All assessments under the direct measurement and image-based measurements on the 3D CT surface rendering images using MDCT and CBCT showed no statistically difference under the ICC examination. The measurements showed no differences between the direct measurements of dry skull and the image-based measurements on the 3D CT surface rendering images (P>.05). Conclusion : Three-dimensional reconstructed surface rendering images using MDCT and CBCT would be appropriate for 3D measurements.

Exploiting Programmable Shaders in Hardware-Assisted Volume Rendering (PC용 그래픽스 가속기의 쉐이더 기능을 이용한 볼륨 렌더링)

  • Im, In-Seong;Gang, Byeong-Gwon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.8 no.2
    • /
    • pp.23-29
    • /
    • 2002
  • In this paper, we describe an implementation technique that extends the classification and shading capabilities offered by previously reported hardware-assisted volume rendering algorithms. In designing our rendering scheme, we exploited the programmable shader technology supported by the latest consumer PC graphics hardware. Our direct volume rendering technique enables to simultaneously display up to four materials, and to dynamically control gradient magnitude to emphasize or de-emphasize surface boundaries. It can easily create lighting effects such as light source attenuation, depth cueing, and multiple light sources that were often difficult to realize in previous hardware-assisted volume rendering.

  • PDF

Realistic Rendering of Woven Surface using Procedural Bump Mapping (절차적 범프 매핑을 이용한 직물표면의 사실적 렌더링)

  • Kang, Young-Min
    • Journal of Korea Game Society
    • /
    • v.10 no.3
    • /
    • pp.103-111
    • /
    • 2010
  • In this paper, an procedural approach to photorealistic rendering of woven fabric material is proposed. Previously proposed procedural approaches to fabric rendering have the disadvantage that the rendering result is not sufficiently realistic. In order to enhance the realism, researchers employed example-based approaches. However, those methods have serious disadvantage that they require huge amount of storage for the various reflectance properties of diverse materials. The proposed method can express the reflectance on weft and warp yarns by alternating the anisotropic reflectance on yarns. In addition, we propose the proposed method procedurally models the bumpy yarn structure of woven fabric to obtain plausible rendering results. The proposed method can efficiently reproduce realistic virtual fabric without any reflectance data sets.

Displacement Mapping for the Precise Representation of Protrusion (정확한 돌출 형상의 표현을 위한 변위매핑)

  • Yoo, Byoung-Hyun;Han, Soon-Hung
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.10
    • /
    • pp.777-788
    • /
    • 2006
  • This paper describes a displacement mapping technique which represents protruded shapes on the surface of an object. Previous approaches for image-based displacement mapping can represent only shapes depressed from the polygon surface. The proposed technique can represent shapes protruded from the underlying surface in real-time. Two auxiliary surfaces which are perpendicular to the underlying surface are added along the boundary of the polygon surface, in order to represent the pixels which overflow over the boundary of the polygon surface. The proposed approach can represent accurate silhouette of protruded shape. It can represent not only smooth displacement of protruded shape, but also abrupt displacement such as perpendicular protrusion by means of adding the supplementary texture information to the steep surface of protruded shape. By per-pixel instructions on the programmable GPU this approach can be executed in real-time. It provides an effective solution for the representation of protruded shape such as high-rise buildings on the ground.

Adaptive B-spline volume representation of measured BRDF data for photorealistic rendering

  • Park, Hyungjun;Lee, Joo-Haeng
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.1
    • /
    • pp.1-15
    • /
    • 2015
  • Measured bidirectional reflectance distribution function (BRDF) data have been used to represent complex interaction between lights and surface materials for photorealistic rendering. However, their massive size makes it hard to adopt them in practical rendering applications. In this paper, we propose an adaptive method for B-spline volume representation of measured BRDF data. It basically performs approximate B-spline volume lofting, which decomposes the problem into three sub-problems of multiple B-spline curve fitting along u-, v-, and w-parametric directions. Especially, it makes the efficient use of knots in the multiple B-spline curve fitting and thereby accomplishes adaptive knot placement along each parametric direction of a resulting B-spline volume. The proposed method is quite useful to realize efficient data reduction while smoothing out the noises and keeping the overall features of BRDF data well. By applying the B-spline volume models of real materials for rendering, we show that the B-spline volume models are effective in preserving the features of material appearance and are suitable for representing BRDF data.

Inscribed Approximation based Adaptive Tessellation of Catmull-Clark Subdivision Surfaces

  • Lai, Shuhua;Cheng, Fuhua(Frank)
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.139-148
    • /
    • 2006
  • Catmull-Clark subdivision scheme provides a powerful method for building smooth and complex surfaces. But the number of faces in the uniformly refined meshes increases exponentially with respect to subdivision depth. Adaptive tessellation reduces the number of faces needed to yield a smooth approximation to the limit surface and, consequently, makes the rendering process more efficient. In this paper, we present a new adaptive tessellation method for general Catmull-Clark subdivision surfaces. Different from previous control mesh refinement based approaches, which generate approximate meshes that usually do not interpolate the limit surface, the new method is based on direct evaluation of the limit surface to generate an inscribed polyhedron of the limit surface. With explicit evaluation of general Catmull-Clark subdivision surfaces becoming available, the new adaptive tessellation method can precisely measure error for every point of the limit surface. Hence, it has complete control of the accuracy of the tessellation result. Cracks are avoided by using a recursive color marking process to ensure that adjacent patches or subpatches use the same limit surface points in the construction of the shared boundary. The new method performs limit surface evaluation only at points that are needed for the final rendering process. Therefore it is very fast and memory efficient. The new method is presented for the general Catmull-Clark subdivision scheme. But it can be used for any subdivision scheme that has an explicit evaluation method for its limit surface.

A Rendering Algorithm for Binary Volume Data based on Slice-based Binary Shell (SBS에 기반한 이진 볼륨 데이타의 렌더링 알고리즘)

  • Kim, Bo-Hyoung;Seo, Jin-Wook;Shin, Byeong-Seok;Shin, Yeong-Gil;Kang, Heung-Sik
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.5
    • /
    • pp.441-449
    • /
    • 2000
  • Binary volume data has its widespread use in the application of color volume rendering and surgical simulation system where gray-scale volume is inappropriate. For the efficient representation of binary volume, this paper proposes a new data structure - the Slice-based Binary Shell (SBS) - along with its rendering algorithm. Since SBS stores the minimal set of surface voxels in slice order and supports the direct computation of voxel coordinates, it shows high efficiency for rendering multiple objects. The rendering algorithm of SBS running on a PC with no specialized hardware renders more than one hundred binary objects in a second.

  • PDF