DOI QR코드

DOI QR Code

Evaluation of accuracy of 3D reconstruction images using multi-detector CT and cone-beam CT

  • Kim, Mi-Ja (Department of Orthodontics, Hangang Sacred Heart Hospital, Graduate School of Clinical Dentistry, Hallym University) ;
  • Huh, Kyung-Hoe (Department of Oral and Maxillofacial Radiology and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • YI, Won-Jin (Department of Oral and Maxillofacial Radiology, BK21 Craniomaxillofacial Life Science, and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Heo, Min-Suk (Department of Oral and Maxillofacial Radiology and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Lee, Sam-Sun (Department of Oral and Maxillofacial Radiology, BK21 Craniomaxillofacial Life Science, and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Choi, Soon-Chul (Department of Oral and Maxillofacial Radiology and Dental Research Institute, School of Dentistry, Seoul National University)
  • Received : 2011.09.28
  • Accepted : 2011.11.08
  • Published : 2012.03.31

Abstract

Purpose : This study was performed to determine the accuracy of linear measurements on three-dimensional (3D) images using multi-detector computed tomography (MDCT) and cone-beam computed tomography (CBCT). Materials and Methods : MDCT and CBCT were performed using 24 dry skulls. Twenty-one measurements were taken on the dry skulls using digital caliper. Both types of CT data were imported into OnDemand software and identification of landmarks on the 3D surface rendering images and calculation of linear measurements were performed. Reproducibility of the measurements was assessed using repeated measures ANOVA and ICC, and the measurements were statistically compared using a Student t-test. Results : All assessments under the direct measurement and image-based measurements on the 3D CT surface rendering images using MDCT and CBCT showed no statistically difference under the ICC examination. The measurements showed no differences between the direct measurements of dry skull and the image-based measurements on the 3D CT surface rendering images (P>.05). Conclusion : Three-dimensional reconstructed surface rendering images using MDCT and CBCT would be appropriate for 3D measurements.

Keywords

References

  1. Mozzo P, Procacci C, Tacconi A, Martini PT, Andreis IA. A new volumetric CT machine for dental imaging based on the cone-beam technique: preliminary results. Eur Radiol 1998; 8 :1558-64. https://doi.org/10.1007/s003300050586
  2. Sukovic P. Cone beam computed tomography in craniofacial imaging. Orthod Craniofac Res 2003; 6(suppl 1) : 31-6.
  3. Ludlow JB, Davies-Ludlow LE, Brooks SL, Howerton WB. Dosimetry of 3 CBCT devices for oral and maxillofacial radiology: CB Mercuray, NewTom 3G and i-CAT. Dentomaxillofac Radiol 2006; 35 : 219-26. https://doi.org/10.1259/dmfr/14340323
  4. Maki K, Inou N, Takanishi A, Miller AJ. Computer-assisted simulations in orthodontic diagnosis and the application of a new cone beam X-ray computed tomography. Orthod Craniofac Res 2003; 6(suppl 1) : 95-101.
  5. Aboudara CA, Hatcher D, Nielsen IL, Miller A. A three-dimensional evaluation of the upper airway in adolescents. Orthod Craniofac Res 2003; 6(suppl 1) : 173-5.
  6. Cevidanes LH, Styner MA, Proffit WR. Image analysis and superimposition of 3-dimensional cone-beam computed tomography models. Am J Orthod Dentofacial Orthop 2006; 129 : 611-8. https://doi.org/10.1016/j.ajodo.2005.12.008
  7. Kau CH, Richmond S, Palomo JM, Hans MG. Three-dimensional cone beam computerized tomography in orthodontics. J Orthod 2005; 32 : 282-93. https://doi.org/10.1179/146531205225021285
  8. Park SH, Yu HS, Kim KD, Lee KJ, Baik HS. A proposal for a new analysis of craniofacial morphology by 3-dimensional computed tomography. Am J Orthod Dentofacial Orthop 2006;129 :600.e23-e34. https://doi.org/10.1016/j.ajodo.2005.11.032
  9. Maeda M, Katsumata A, Ariji Y, Muramatsu A, Yoshida K, Goto S, et al. 3D-CT evaluation of facial asymmetry in patients with maxillofacial deformities. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006; 102 : 382-90. https://doi.org/10.1016/j.tripleo.2005.10.057
  10. Olszewski R, Cosnard G, Macq B, Mahy P, Reychler H. 3D CT-based cephalometric analysis: 3D cephalometric theoretical concept and software. Neuroradiology 2006; 48 : 853-62. https://doi.org/10.1007/s00234-006-0140-x
  11. Hwang HS, Hwang CH, Lee KH, Kang BC. Maxillofacial 3- dimensional image analysis for the diagnosis of facial asymmetry. Am J Orthod Dentofacial Orthop 2006; 130 : 779-85. https://doi.org/10.1016/j.ajodo.2005.02.021
  12. Lagravere MO, Hansen L, Harzer W, Major PW. Plane orientation for standardization in 3-dimensional cephalometric analysis with computerized tomography imaging. Am J Orthod Dentofacial Orthop 2006; 129 : 601-4. https://doi.org/10.1016/j.ajodo.2005.11.031
  13. Swennen GR, Schutyser F, Barth EL, De Groeve P, De Mey A. A new method of 3-D cephalometry Part I: The anatomic Cartesian 3-D reference system. J Craniofac Surg 2006; 17 : 314-25. https://doi.org/10.1097/00001665-200603000-00019
  14. Olszewski R, Zech F, Cosnard G, Nicolas V, Macq B, Reychler H. Three-dimensional computed tomography cephalometric craniofacial analysis: experimental validation in vitro. Int J Oral Maxillofac Surg 2007; 36 : 828-33. https://doi.org/10.1016/j.ijom.2007.05.022
  15. Yoon SJ, Lim HJ, Kang BC, Hwang HS. Three dimensional CT analysis of facial asymmetry. Korean J Oral Maxillofac Radiol 2007; 37 : 45-51.
  16. Xia J, Samman N, Yeung RW, Shen SG, Wang D, Ip HH, et al. Three-dimensional virtual reality surgical planning and simulation workbench for orthognathic surgery. Int J Adult Orthodon Orthognath Surg 2000; 15 : 265-82.
  17. Westermark A, Zachow S, Eppley BL. Three-dimensional osteotomy planning in maxillofacial surgery including soft tissue prediction. J Craniofac Surg 2005; 16 : 100-4. https://doi.org/10.1097/00001665-200501000-00019
  18. Hildebolt CF, Vannier MW, Knapp RH. Validation study of skull three-dimensional computerized tomography measurements. Am J Phys Anthropol 1990; 82 : 283-94. https://doi.org/10.1002/ajpa.1330820307
  19. Kragskov J, Bosch C, Gyldensted C, Sindet-Pedersen S. Comparison of the reliability of craniofacial anatomic landmarks based on cephalometric radiographs and three-dimensional CT scans. Cleft Palate Craniofac J 1997; 34 : 111-6. https://doi.org/10.1597/1545-1569(1997)034<0111:COTROC>2.3.CO;2
  20. Nagashima M, Inoue K, Sasaki T, Miyasaka K, Matsumura G, Kodama G. Three-dimensional imaging and osteometry of adult human skulls using helical computed tomography. Surg Radiol Anat 1998; 20 : 291-7. https://doi.org/10.1007/BF01628494
  21. Cavalcanti MG, Vannier MW. Quantitative analysis of spiral computed tomography for craniofacial clinical applications. Dentomaxillofac Radiol 1998; 27 : 344-50. https://doi.org/10.1038/sj.dmfr.4600389
  22. Cavalcanti MG, Haller JW, Vannier MW. Three-dimensional computed tomography landmark measurement in craniofacial surgical planning: experimental validation in vitro. J Oral Maxillofac Surg 1999; 57 : 690-4. https://doi.org/10.1016/S0278-2391(99)90434-2
  23. Jung H, Kim HJ, Kim DO, Hong SI, Jeong HK, Kim KD, et al. Quantitative analysis of three-dimensional rendered imaging of the human skull acquired from multi-detector row computed tomography. J Digit Imaging 2002; 15 : 232-9. https://doi.org/10.1007/s10278-002-0031-6
  24. Kim DO, Kim HJ, Jung H, Jeong HK, Hong SI, Kim KD. Quantitative evaluation of acquisition parameters in three-dimensional imaging with multidetector computed tomography using human skull phantom. J Digit Imaging 2002; 15(suppl 1) : 254-7.
  25. Jeon KJ, Park H, Lee HC, Kim KD, Park CS. Reproducibilities of cephalometric measurements of three-dimensional CT images reconstructed in the personal computer. Korean J Oral Maxillofac Radiol 2003; 33 : 171-8.
  26. Williams FL, Richtsmeier JT. Comparison of mandibular landmarks from computed tomography and 3D digitizer data. Clin Anat 2003; 16 : 494-500. https://doi.org/10.1002/ca.10095
  27. Cavalcanti MG, Rocha SS, Vannier MW. Craniofacial mea-surements based on 3D-CT volume rendering: implications for clinical applications. Dentomaxillofac Radiol 2004; 33 : 170-6. https://doi.org/10.1259/dmfr/13603271
  28. Park JW, Kim NK, Chang YI. Formulation of a reference coordinate system of three-dimensional (3D) head & neck images: Part I. Reproducibility of 3D cephalometric landmarks. Korean J Orthod 2005; 35 : 388-97.
  29. Olszewski R, Reychler H, Cosnard G, Denis JM, Vynckier S, Zech F. Accuracy of three-dimensional (3D) craniofacial cephalometric landmarks on a low-dose 3D computed tomograph. Dentomaxillofac Radiol 2008; 37 : 261-7. https://doi.org/10.1259/dmfr/33343444
  30. Lopes PM, Moreira CR, Perrella A, Antunes JL, Cavalcanti MG. 3-D volume rendering maxillofacial analysis of angular measurements by multislice CT. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008; 105 : 224-30. https://doi.org/10.1016/j.tripleo.2007.08.036
  31. Stratemann SA, Huang JC, Maki K, Miller AJ, Hatcher DC. Comparison of cone beam computed tomography imaging with physical measures. Dentomaxillofac Radiol 2008; 37 : 80-93. https://doi.org/10.1259/dmfr/31349994
  32. Periago DR, Scarfe WC, Moshiri M, Scheetz JP, Silveira AM, Farman AG. Linear accuracy and reliability of cone beam CT derived 3-dimensional images constructed using an orthodontic volumetric rendering program. Angle Orthod 2008; 78 : 387-95. https://doi.org/10.2319/122106-52.1
  33. Brown AA, Scarfe WC, Scheetz JP, Silveira AM, Farman AG. Linear accuracy of cone beam CT derived 3D images. Angle Orthod 2009; 79 : 150-7. https://doi.org/10.2319/122407-599.1
  34. Kumar V, Ludlow JB, Mol A, Cevidanes L. Comparison of conventional and cone beam CT synthesized cephalograms. Dentomaxillofac Radiol 2007; 36 : 263-9. https://doi.org/10.1259/dmfr/98032356
  35. Olszewski R, Tanesy O, Cosnard G, Zech F, Reychler H. Reproducibility of osseous landmarks used for computed tomography based three-dimensional cephalometric analyses. J Craniomaxillofac Surg 2010; 38 : 214-21. https://doi.org/10.1016/j.jcms.2009.05.005
  36. Baumrind S, Frantz RC. The reliability of head film measurements.1. Landmark identification. Am J Orthod 1971; 60 : 111-27. https://doi.org/10.1016/0002-9416(71)90028-5
  37. Chien PC, Parks ET, Eraso F, Hartsfield JK, Roberts WE, Ofner S. Comparison of reliability in anatomical landmark identification using two-dimensional digital cephalometrics and three-dimensional cone beam computed tomography in vivo. Dentomaxillofac Radiol 2009; 38 : 262-73. https://doi.org/10.1259/dmfr/81889955
  38. Jeong HG, Kim KD, Park H, Kim DO, Jeong H, Kim HJ, et al. Three-dimensional image analysis of the skull using variable CT scanning protocols-effect of slice thickness on measurement in the three-dimensional CT images. Korean J Oral Maxillofac Radiol 2004; 34 : 151-7.
  39. Swennen GR, Schutyser F. Three-dimensional cephalometry: spiral multi-slice vs cone-beam computed tomography. Am J Orthod Dentofacial Orthop 2006; 130 : 410-6. https://doi.org/10.1016/j.ajodo.2005.11.035
  40. Richtsmeier JT, Paik CH, Elfert PC, Cole TM 3rd, Dahlman HR. Precision, repeatability, and validation of the localization of cranial landmarks using computed tomography scans. Cleft Palate Craniofac J 1995; 32 : 217-27. https://doi.org/10.1597/1545-1569(1995)032<0217:PRAVOT>2.3.CO;2
  41. Fox LA, Vannier MW, West OC, Wilson AJ, Baran GA, Pilgram TK. Diagnostic performance of CT, MPR, 3DCT imaging in maxillofacial trauma. Comput Med Imaging Graph 1995; 19 : 385-95. https://doi.org/10.1016/0895-6111(95)00022-4
  42. Laine FJ, Conway WF, Laskin DM. Radiology of maxillofacial trauma. Curr Probl Diagn Radiol 1993; 22 : 145-88.

Cited by

  1. The significance of cone beam computed tomography for the visualization of anatomical variations and lesions in the maxillary sinus for patients hoping to have dental implant-supported maxillary resto vol.10, pp.None, 2012, https://doi.org/10.1186/1746-160x-10-20
  2. Regional 3D superimposition to assess temporomandibular joint condylar morphology vol.43, pp.1, 2012, https://doi.org/10.1259/dmfr.20130273
  3. Vertical bone measurements from cone beam computed tomography images using different software packages vol.29, pp.1, 2012, https://doi.org/10.1590/1807-3107bor-2015.vol29.0035
  4. Analysis of linear measurements on 3D surface models using CBCT data segmentation obtained by automatic standard pre-set thresholds in two segmentation software programs: an in vitro study vol.20, pp.1, 2012, https://doi.org/10.1007/s00784-015-1485-5
  5. Classification of periodontal biotypes with the use of CBCT. A cross-sectional study vol.20, pp.8, 2016, https://doi.org/10.1007/s00784-015-1694-y
  6. Midfacial growth patterns in males from newborn to 5 years old based on computed tomography vol.30, pp.4, 2012, https://doi.org/10.1002/ajhb.23132
  7. Accuracy and Reliability of Measurements Obtained from 3-Dimensional Rabbit Mandible Model: A Micro-Computed Tomography Study vol.69, pp.2, 2012, https://doi.org/10.2478/acve-2019-0015
  8. Targeted Endodontic Microsurgery: Digital Workflow Options vol.46, pp.6, 2012, https://doi.org/10.1016/j.joen.2020.02.006
  9. Contemplations and Ruminations of Methodological Error vol.79, pp.1, 2021, https://doi.org/10.1016/j.joms.2020.08.031
  10. Assessing the efficacy of tomographic reconstruction methods through physical quantification techniques vol.32, pp.7, 2012, https://doi.org/10.1088/1361-6501/abe337