
ETRI Journal, Volume 33, Number 1, February 2011 © 2011 Dae-Hyun Ko et al. 89

We construct surfaces with darts, creases, and corners
by blending different types of local geometries. We also
render these surfaces efficiently using programmable
graphics hardware. Points on the blending surface are
evaluated using simplified computation which can easily
be performed on a graphics processing unit. Results show
an eighteen-fold to twenty-fold increase in rendering speed
over a CPU version. We also demonstrate how these
surfaces can be trimmed using textures.

Keywords: Blending surface, GPU-based rendering,
vertex program, fragment program, sharp features.

Manuscript received Mar. 13, 2010; revised Oct. 6, 2010; accepted Oct. 25, 2010.
This research was supported by Basic Science Research Program through the National

Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and
Technology (No. 2010-0015293), and supported by the MKE (Ministry of Knowledge
Economy), Korea, under the ITRC (Information Technology Research Center) support
program supervised by the NIPA (National IT Industry Promotion Agency) (NIPA-2010-
C1090-1021-0013), and also supported by the Strategic Technology Development Program of
MCST/MKE/KEIT [KI001798, Development of Full 3D Reconstruction Technology for
Broadcasting Communication Fusion].

Dae-Hyun Ko (Phone: +82 10 2240 3786, email: daehyun.ko@gmail.com) is with the
DMC R&D Center, Samsung Electronics, Suwon, Rep. of Korea.

Jieun Lee (email: JieunJadeLee@gmail.com) is with the Department of Computer
Engineering, Chosun University, Gwangju, Rep. of Korea.

Seong-Jae Lim (email: sjlim@etri.re.kr) is with the Contents Research Division, ETRI,
Daejeon, Rep. of Korea.

Seung-Hyun Yoon (corresponding author, email: shyun@dongguk.edu) is with the
Department of Multimedia Engineering, Dongguk University, Seoul, Rep. of Korea.

doi:10.4218/etrij.11.1510.0091

I. Introduction

Modern graphics processing units (GPUs) have a
programmable graphics pipeline which allows various
rendering tasks in computer graphics and animation to be
addressed at a higher level than hitherto. One such task is the
direct rendering of application-oriented shape representations,
such as non-uniform rational B-spline (NURBS) surfaces,
implicit surfaces, and subdivision surfaces. These formulations
are compact and allow differential properties to be computed
with precision. However, these advantages may be outweighed
by the need to tessellate such surfaces for rendering. To avoid
this drawback, many GPU-based techniques [1]-[4] for
rendering analytic surfaces directly have been proposed.

In this context, our current concern is the manifold-based
blending surface construction scheme recently proposed by
Ying and Zorin [5]. They construct a C∞-continuous surface by
blending local geometries on overlapping charts. This new
technique provides many advantages, such as analytical
formulae for surface properties, simplicity, and local control.
However, the evaluation of points on one of these blends
requires rather involved computations of evaluation parameters,
local geometries, and blending functions. However, we note
that most of these operations can easily be performed by a
GPU.

We extend the scheme of Ying and Zorin [5] to propose a
blending surface that can represent sharp features, such as darts,
corners, and creases. In subdivision surfaces, features of this
sort can be realized by applying different subdivision rules [6]-
[8]. However, very little effort has been applied to the
expression of sharp features in blending surfaces [9]. We
address this problem with a technique in which features of this
sort are initially created as sharp edges on a control mesh.

Construction and Rendering of Trimmed
Blending Surfaces with Sharp Features on a GPU

Dae-Hyun Ko, Jieun Lee, Seong-Jae Lim, and Seung-Hyun Yoon

90 Dae-Hyun Ko et al. ETRI Journal, Volume 33, Number 1, February 2011

Depending on the topology of these edges, different types of
local geometries, such as points, curves, or surface patches, are
created. These are then blended together to generate the
required features.

We go on to present an efficient algorithm for rendering and
trimming our extended blending surfaces using a GPU. Points
on the surface are evaluated by a repetitive sequence of matrix
and vector computations which can easily be implemented in a
GPU. Experimental results show an eighteen-fold to twenty-
fold increase in rendering speed, compared with a CPU-based
implementation. We also demonstrate how these new surfaces
can be trimmed in the GPU using textures.

The rest of this paper is organized as follows. In section II,
we review related recent work. In section III, we briefly
summarize the blending scheme proposed by Ying and Zorin
[5]. Our extension of their scheme to sharp features is
explained in section IV. We then propose an efficient algorithm
for rendering and trimming a blended surface in section V and
compare the performance of GPU-based and CPU-based
implementations in section VI. Finally, we conclude this paper
in section VII.

II. Related Work

We look first at blends based on manifold theory and then
briefly review GPU-based techniques for rendering related
surface representations.

1. Blending Surfaces

Grim and Hughes [10] used a technique based on the
concept of the manifolds to construct surfaces of arbitrary
topology. This technique has subsequently been applied to the
parameterization of surfaces [11] and to the fitting of surfaces
to point cloud data [12]. Cotrina and Pla [13] described a
similar algorithm for constructing Ck-continuous surfaces with
boundary curves of B-spline form. This formulation may be
seen as a generalized B-spline surface. An even more general
version of this approach was subsequently proposed by Cotrina
and others [14], which can produce three different types of
surfaces. However, these techniques require complicated
transition functions.

Ying and Zorin [5] have introduced a technique for
constructing a smooth surface of arbitrary topology by
constructing charts in the complex plane and combining them
with transition functions with simple forms. This approach
provides both ∞C continuity and local control of the surface;
moreover, the resulting surfaces are visually satisfactory. This is
the jumping-off point for our technique. Gu and others [15]
have put forward a theoretical and computational framework

for manifold splines defined on a control mesh of arbitrary
topology. They also provided a practical algorithm for creating
a triangular B-spline surface on such a control mesh.

A new approach to the construction of rational manifold
surfaces has been proposed by Vecchia and others [16]. Their
surfaces consist of rational tensor-product and triangular
surface patches, which are combined using transition functions
obtained by sub-chart parameterization. Recently, Vecchia and
Jüttler [9] further extended this technique to include different
types of sharp features. We also aim to generate sharp features
on a blending surface, but our technique is different, and we
also consider the computational aspects in more detail.

2. Rendering Using a GPU

The capability of modern GPUs to perform general
computations has been widely used, and GPU-based rendering
techniques have recently been proposed for several shape
representations. Guthe and others [1] put forward a GPU-based
technique for rendering and trimming spline surfaces
approximated by bicubic Bézier surfaces. Points on the latter
are computed in a vertex program, and the surface is then
trimmed using a texture in a fragment program. However, their
technique cannot render the spline surface exactly since it has
to be approximated. Krishnamurthy and others [2] computed
points on a trimmed NURBS surface directly using a fragment
program. They store the control points, the knot vectors, and
pre-computed values of the basis functions for sampled
parameters in texture memory and compute points on the
surface at the fragment programming stage. Although their
technique shows a fifty-fold increase in rendering speed over a
CPU version, the values of the basis functions must be pre-
computed and maintained during rendering. This contrasts with
our blending approach, in which local geometries are evaluated
efficiently in the GPU. A GPU-based technique for rendering
of spline surfaces by ray-casting was proposed by Pabst and
others [17]. They render the convex hull of a spline surface,
and only the fragments in which a ray intersects the surface are
subsequently shaded in a fragment program.

Turning to implicit surfaces, Sigg and others [3] presented a
GPU-based technique for ray-casting quadrics, and Kanai and
others [18] have suggested a method for ray-casting sparse
low-degree implicit surfaces. In the latter, intersections of rays
with the surface are computed in a fragment program. A GPU-
based method for rendering iso-surfaces extracted from
tetrahedral grids has been proposed by Reck and others [19].
Tetrahedra are streamed into a vertex program which extracts
the iso-surface for a given value and renders it immediately.

Yasui and others [4] introduced GPU-based rendering for the
reflection lines of a subdivision surface, and Bolz and others

ETRI Journal, Volume 33, Number 1, February 2011 Dae-Hyun Ko et al. 91

[20] have put forward a technique for computing points on a
Catmull-Clark subdivision surface using a GPU. In the latter
technique, tessellations of the basic functions are precomputed
and stored in texture memory. At run-time, a fragment program
receives the control mesh and evaluates the corresponding
subdivision surface.

III. Manifold-Based Blending

Now we will summarize the approach of Ying and Zorin [5]
to constructing a blending surface.

1. Charts

For each vertex vi of a control mesh, a chart Ui is defined as a
subset of the complex plane whose shape depends on the
valence k of the vertex. Figure 1 shows the construction of a
chart for a vertex of valence 6. The chart is formed by
transforming a unit square [0, 1]×[0, 1] in the complex plane
using the conformal mapping 4 / kz z→ (Fig. 1(b)) and then
rotating them through an angle 2 /h kφ π= as follows
(Fig. 1(c)):

4

4

() ((cos sin)) (cos sin)

 (cos((4 2) /) sin((4 2) /)),

k

k

f z r i i

r h k i h k

θ θ φ φ

θ π θ π

= + +

= + + +

where (cos sin) [0,1] [0,1]z r iθ θ= + ∈ × , and h is a counter-
clockwise index which enumerates the edges connected to the
vertex vi. The final chart Ui is the union of these transformed

Fig. 1. Constructing the chart for a vertex of valence 6.

h=2

h=3

h=4
h=5

h=0

h=1 vi

1

0 k=6, h=1 1

z

z4/6

(a) (b)

0
k=6, h=1, φ=60

z(cos60+i sin60)

z

Ui

(c) (d)

1

squares for h = 0, 1, …, k–1 (Fig. 1(d)).
If the control mesh has quadrilateral faces, then each face has

four corresponding charts. To compute the local geometry and
blending function on each chart, a sampling parameter z in a
unit square is transformed to an evaluation parameter zi on each
chart Ui, i = 1, 2, 3, 4 (see section V.2 for more details).

2. Local Geometries

A local geometry Pi(z): Ui → R3 is defined on each chart to
represent the shape of a blending surface around a vertex vi as
follows:

, , ,() [(,) (,) (,)] ,T
i i x i y i zP z p u v p u v p u v=

where the parameters u and v are the real and imaginary parts
of z ∈ Ui , respectively. Ying and Zorin [5] use polynomials of
high degree to represent local geometries that approximate the
subdivision surface of a control mesh, whereas we employ
different types of local geometry on each chart (see section IV.1
for more details).

3. Blending Functions

On each chart Ui, we define a smooth blending function
wi(z): Ui →R, such that wi(z)=1 at z=0+i0 and wi(z)=0 at z ∂∈ Ui,
where ∂Ui is the boundary of chart Ui. We formulate a
univariate scalar function η(t) and then construct a blending
function over the unit square [0, 1]×[0, 1] as a product of
η(u)η(v). The final blending function wi(z) is then constructed
by mapping η(u)η(v) to Ui; the form of this mapping depends
on the valence of the vertex vi. Figure 2 shows the construction
of the blending function for a vertex of valence 6. Ying and
Zorin [5] use a function η(t) which is infinitely differentiable at
t=0 and t=1 to construct a C∞-continuous blending surface,
whereas we employ a Hermite interpolant to facilitate a GPU
implementation.

The final surface is constructed by blending all the local
geometries together. For a given parameter value z in the unit
square [0, 1]×[0, 1] that corresponds to a face, a point S(z) on
the surface is computed as

4

1

() () (), i i i i
i

S z w z P z
=

= ∑ (1)

Fig. 2. Construction of a blending function wi(z): tone shows
value, from black (0) to white (1).

η(t)

0 1

1 1

0 1
Conformal
mapping

4
kz z=

η(u) η(v)

Rotate &
copy

92 Dae-Hyun Ko et al. ETRI Journal, Volume 33, Number 1, February 2011

where zi is the corresponding parameter on each of the charts
Ui, i=1, 2, 3, 4, that share the face (see Fig. 9), and Pi(zi) are the
local geometries.

IV. Extending Blending Surface to Incorporate Sharp
Features

We now extend the formulation of the blending surface
described above to model sharp features.

1. Local Geometries

We take a new approach to the definition of local geometries.
Edges on a control mesh can be labeled as sharp by the user,
and then a different type of local geometry is created on each
chart, which depends on the number and configuration of the
sharp edges that meet at a vertex. Figures 3(a), (b), (c), and (d)
show how sharp edges influence the local geometry.

Let n be the number of sharp edges that meet at a vertex vi.
For n=0, we use a surface patch Pi(z): Ui→R3 as the local
geometry on the corresponding chart Ui. This patch has the
following bi-quadratic polynomial representation, which
approximately interpolates the positions of the vertices
neighboring vi:

1,1 1,2 1,3
2

2,1 2,2 2,3
2

3,1 3,2 3,3

1
() 1 ,

i i i

i i i
i

i i i

P z u u v

v

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎡ ⎤= ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

c c c

c c c

c c c

 (2)

where , , , , ,
Ti i i i

m n m n m n m nx y z⎡ ⎤= ⎣ ⎦c and the parameters u

and v are the real and imaginary parts of z ∈ Ui , respectively.

The coefficient vectors ,
i
m nc in (2) can be determined by

minimizing the following functional:

2
1,1 1,2 3,3

1

(, ,...,) () ,
k

i i i l
i i l

l

L v P z
=

= −∑c c c

subject to Pi(0+i0)=vi, where k is the valence of a vertex vi, and
vl

i is the l-th neighboring vertex of vi. The constraint
Pi(0+i0)=vi forces the coefficient 1,1

ic to be vi, so that the
surface goes through the vertex vi, which is the origin of each
chart. Figure 4(a) shows the vertices of a control mesh around
the vertex vi, and Fig. 4(b) shows the corresponding surface
patch, which passes through the central vertex vi.

For n=1 or n≥3, we simply take the vertex vi itself as the
local geometry:

() , for all .i i iP z z U= ∈v

In the special case in which all local geometries are vertices of
a control mesh, the blending surface will be the original control
mesh itself.

When n=2, we take a quadratic Bézier curve Pi(z) as the
local geometry:

2
2

0

() (()),i
i j j i

j

P z B zσ
=

= ∑q (3)

where i
jq are control points, and 2 ()jB are quadratic

Bernstein basis functions. If e1=(vj, vi) and e2=(vi, vk) are the
first and second sharp edges of vi , respectively, then the control
points are determined as

0 1 2, , and i i i
j i k= = =q v q v q v .

The curve parameter for z ∈ Ui is computed by a function

Fig. 3. Creating different types of sharp feature by blending different types of local geometry. Sharp edges are shown in red.

(a) (b) (c) (d)

(e) (f) (g) (h)

ETRI Journal, Volume 33, Number 1, February 2011 Dae-Hyun Ko et al. 93

Fig. 4. Local geometry: (a) vertex vi and its neighboring vertices
and (b) constructed surface patch Pi(z).

(a)

4
iv

5
iv

3
iv

2
iv

1
iv6

iv

iv

(b)

Table 1. Extended local geometries.

Numbers of sharp edges Sharp features Local geometry

0 Smooth Surface patch

1 Dart Point

2 Crease Curve

≥3 Corner Point

() : [0,1]i iz Uσ → (see section V.3).
Table 1 lists the possible local geometries and the

corresponding sharp features that result. A smooth region is
created when four surface patches are blended (Fig. 3(e)), and a
dart is created between two vertices which share a sharp edge
(Fig. 3(f)). A crease is created when a quadratic curve is
blended with other types of local geometries (Fig. 3(h)), and a
corner is created at the vertex when n≥3 (Fig. 3(g)).

2. Blending Functions

We take a similar approach to the construction of a blending
function to Ying and Zorin [5] (see section III.3). Our only
deviation from their scheme is to use the Hermite interpolant
η1(t)=2t3–3t2+1, as shown in Fig. 5. To create a Ck-continuous
blending surface, η1(t) and η2(t) (=η1(1–t)) need to be Ck-
continuous at t=0 and t=1, respectively. Since η′1(0)=η′2(0) and

Fig. 5. Hermite interpolants with η'1(0)=η'2(0) and η'1(1)=η'2(1)
producing a C1-continuous blending surface.

2 1() (1)t tη η= −

3 2
1() 2 3 1t t tη = − +

t
1

1

ㅋ

Fig. 6. Blending functions using Hermite interpolant on charts of
valence: (a) 6 and (b) 3.

(a) (b)

η′1(1)=η′2(1), the Hermite interpolant guarantees that the resulting
surface is C1-continuous, except at the sharp features defined
by the user. We use Hermite functions because they can be
evaluated by modern GPUs, which allows our blending
scheme to be implemented efficiently as a vertex program.
Figures 6(a) and (b) show the blending functions on charts with
different valences using the Hermite interpolant η1(t).

V. GPU-Based Evaluation and Rendering

We now show how to evaluate points on the blending
surface using programmable graphics hardware. The overall
flow of the algorithm is shown in Fig. 7.

1. Preprocessing

We start by computing the coefficients of the local
geometries for all the vertices of a control mesh and then create
a texture image from their coefficients (in the RGB channels).
This is done in the CPU. Figure 8 shows the coefficients of
different types of local geometry stored in a texture image with
9 rows and w columns, where w is the number of vertices of
the control mesh. The texture images are then transmitted to the
texture memory of the GPU.

94 Dae-Hyun Ko et al. ETRI Journal, Volume 33, Number 1, February 2011

Fig. 7. Algorithm for evaluating and rendering trimmed blending
surface.

Control
mesh

Local geometry
texture

Pre-
processing

Trimming texture

CPU GPU

Vertex program Fragment program

Evaluation
parameters (ui, vi)

Evaluation of
local geometries

Blending local
geometries

Texture
coordinate

Trimming

Input CPU processing GPU processing

Sampling
parameters ˆ(,u ˆ)v

Fig. 8. Coefficients of local geometries for charts Ui, Uj, and Uk
stored in a texture image. Pi is a surface patch, Pj is a
curve, and Pk is the vertex vk.

3,2
ix

3,3
ix

1,2
ix

1,1
ix

0,
j

xq

1,
j
xq

2,
j

xq

,k xv

3,2
iy

3,3
iy

1,2
iy

1,1
iy 0,

j
yq ,k yv

3,2
iz

3,3
iz

1,2
iz

1,1
iz 0,

j
zq ,k zv

Pi Pj Pk

R

G
B

0

0

0

0

0

0

0

0

0

0

0

0

0

0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

2. Computing Evaluation Parameters

As shown in Fig. 7, the evaluation process starts with the
transmission of sampling parameters to a vertex program in the
graphics pipeline. We assume that the parametric domain of
each face is a unit square [0, 1]×[0, 1] on which the parameter

viuz ˆˆˆ += is uniformly sampled as shown in Fig. 9. The
values of the sampling parameter viuz ˆˆˆ += are then
transformed to the coordinates i i iz u iv= + on each chart Ui,
i = 1, 2, 3, 4, that corresponds to the face. For this, four polar

Fig. 9. Sampling parameter ẑ = û + ˆiv on unit square transformed to
evaluation parameter zi on each chart Ui, i = 1, 2, 3, 4.

u

v

U1

U2

U3U4

0 1

1

u

u

u

v

v

v

(u1, v1)

(u4, v4)
(u3, v3)

(u2, v2)

ẑ = û + ˆiv

coordinates ˆˆˆ (,),i i iz r θ= i = 1, 2, 3, 4, expressed in the
coordinate system of each chart, are computed as

))).ˆ1/(ˆ(atan2,ˆ)ˆ1(()ˆ,ˆ(

))),ˆ1/()ˆ1((atan2,)ˆ1()ˆ1(()ˆ,ˆ(

)),ˆ/)ˆ1((atan2,)ˆ1(ˆ()ˆ,ˆ(

)),ˆ/ˆ(atan2,ˆˆ()ˆ,ˆ(

22
44

22
33

22
22

22
11

vuuvr

uvvur

vuuvr

uvvur

−+−=

−−−+−=

−−+=

+=

θ

θ

θ

θ

The evaluation parameters on a chart of valence ki are
computed in polar form zi=(ri, θi) on each chart Ui, i = 1, 2, 3, 4,
as

).,()/ˆ4,ˆ())ˆsinˆ(cosˆ()ˆ(/4/4/4
iiii

k
i

k
iii

k
ii rkrrzz iii θθθθ ==+==

To compute points on the local geometries, the evaluation
parameters need to be represented in the form zi=ui+ivi on the
corresponding chart Ui. To achieve this, we form a 4×4
diagonal matrix R with diagonal elements ri and a 4×2 matrix
Θ with sine and cosine of θi. The final evaluation parameter
zi=ui+ivi on each chart Ui, i = 1, 2, 3, 4, is computed as

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

0 0 0 cos sin
0 0 0 cos sin

.
0 0 0 cos sin
0 0 0 cos sin

u v r
u v r

R
u v r
u v r

θ θ
θ θ
θ θ
θ θ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= Θ =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Since GPUs provide an efficient mechanism for evaluating
sin, cos, and atan2 functions, together with multiplication of
vectors and matrices which are built-in data types, the
evaluation parameters zi=ui+ivi can be computed very
efficiently. Once the four evaluation parameters have been
determined, we can evaluate points on the local geometries and
the blending functions.

ETRI Journal, Volume 33, Number 1, February 2011 Dae-Hyun Ko et al. 95

3. Evaluation of Local Geometries

It would be inefficient to employ different procedures for
evaluating each of the three types of local geometry. We will
now show how a unified evaluation procedure can be used for
all three types of local geometry without reducing the
efficiency of the GPU. This evaluation procedure consists of
three steps:

Step 1. Fetch the texture memory and recover the coefficient
matrix used in (2).

Step 2. Form the two vectors in (2) to match the specific type
of local geometry.

Step 3. Evaluate the local geometry by performing the vector
and matrix multiplications specified in (2).

When n=1 or n≥3, the local geometry Pi(z) is the vertex vi
itself. Since vi is stored in the top row of the texture image, the
local geometry vi (= 1,1

ic) can be computed using (2) by setting
the evaluation parameter zi to 0 + i0.

When n=0, we form the two vectors of the monomial basis
functions in (2) from the evaluation parameter zi=ui+ivi in
step 2 and then compute a point on the surface patch Pi(zi) in
step 3. Two matrix-vector multiplications are required for each
coordinate, making a total of six operations.

When n=2, the curve parameters σi(z) in (3) have to be
determined to evaluate a point on the Bézier curve Pi(z), which
is the local geometry of the chart Ui. The curve parameter σi(z)
on each chart Ui can be computed directly using sampling
parameters. If ẑ is a sampling parameter of a face f, then the
curve parameter ˆ() (())i iz zσ σ= is determined as

1 0 1

2 1 2

1 2

ˆ0.5 cos , if (,) ,
ˆ() ˆ0.5 cos , if (,) ,

0.5, if and ,

i i

i i
i

z e f
z z e f

e f e f

θ
σ θ

⎧ − = ∈
⎪

= + = ∈⎨
⎪

∉ ∉⎩

q q

q q (4)

where e1 and e2 are the edges connected to the vertex
1()i

i =v q which are labeled as sharp, and θ is the angle
between ẑ and the sharp edge on the face f. Figure 10 shows
how to determine the curve parameters ˆ()i zσ of 0ˆ ,z f∈
which can be computed from the expression ˆ0.5 cosz θ−
since e1 ∈ f0. Similarly, the curve parameters of 1ẑ f∈ can be
computed from ˆ0.5 cosz θ+ since e2∈f1. However, the curve
parameters of 2ẑ f∈ are 0.5 since e1∉ f2 and e2∉ f2.

The control points for a Bézier curve Pi(z) are stored in
the first three rows of the texture image. Therefore, a point
on the curve can be evaluated by replacing the two
vectors of the monomial basis functions with [1 0 0]

and 2 2 2
0 1 2() () () ,

T
i i iB B Bσ σ σ⎡ ⎤

⎣ ⎦ respectively, in step 2.

Table 2 lists the different pairs of vectors that must be formed
in step 2 to evaluate different types of local geometry.

Fig. 10. Evaluation parameter σi(z) computed from the sampling
parameters viuz ˆˆˆ += of a face when a quadratic Bézier
curve Pi(z) is the local geometry of a vertex vi.

f2

ẑ

0.5iσ =

1()i
i =v q

1e
0
iq ()iP z

2e
2
iq

0f 1f

1
iq

ẑ

θ

iσ0
iq 1

iq iσ 2
iq

ẑ

θ

Table 2. Pairs of vectors used in step 2 for different configuration of
edges.

Number of
sharp edges 1st vector 2nd vector

0
21 i iu u⎡ ⎤

⎣ ⎦ 21
T

i iv v⎡ ⎤
⎣ ⎦

1 or≥3 1 0 0⎡ ⎤⎣ ⎦ 1 0 0 T
⎡ ⎤⎣ ⎦

2 1 0 0⎡ ⎤⎣ ⎦ 2 2(1) 2(1)
T

i i i iσ σ σ σ⎡ ⎤− −⎣ ⎦

4. Blending Local Geometries

The final blending surface is then constructed by blending
four points from the local geometries. This requires computing
the blending functions wi(zi) for these points. Since we use a
Hermite interpolant, we can use the Hermite interpolation
function provided by the shading language of the GPU. First
we form a 3×4 matrix P from the points on the local
geometries and a 4D vector w from the blending functions wi,
which we have already computed. The final blended point p
can then be computed in a single matrix and vector
multiplication as follows:

1
1, 2, 3, 4,

2
1, 2, 3, 4,

3
1, 2, 3, 4,

4

.
x x x x

y y y y

z z z z

w
p p p p

w
P p p p p

w
p p p p w

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥= = ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

p w (5)

5. Trimming

Since the sampling parameters are sampled in a unit square

96 Dae-Hyun Ko et al. ETRI Journal, Volume 33, Number 1, February 2011

Fig. 11. (a) Trimming texture and (b) trimmed blending surface.

(a) (b)

[0, 1]×[0, 1] for each face, we can easily trim the surface using
a trimming texture in a fragment program. As shown in
Fig. 11(a), a trimming texture is a binary image in which the
region to be trimmed is colored black. The vertex program
returns the sampling parameters viuz ˆˆˆ += to the graphics
pipeline, and these are interpreted as texture coordinates)ˆ,ˆ(vu
of the blending surface. The linearly interpolated texture
coordinates are then used in a fragment program to create
fragments that will not be rendered. A trimming texture and a
trimmed blending surface are shown in Figs. 11(a) and (b),
respectively.

VI. Experimental Results

We implemented the part of our rendering algorithm that
runs on the CPU in C++, and the part that runs on the GPU
was implemented in the Cg shading language [21]. The CPU
that we used was a Pentium-IV running at 3.2 GHz with a
1 Gb main memory, and the GPU was an NVIDAI GeForce
6800 Ultra.

Figures 12(a), (c), and (e) show some example control
meshes, and Figs. 12(b), (d), and (f) show the resulting
blending surface generated by our GPU-based implementation.
The performance of our rendering technique is not influenced
by the types of local geometry to be blended because the
computations are the same for all the geometries, which is
because we use the unified evaluation procedure described in
section V.3. We measured the rendering speed for blending
surfaces without sharp features.

Table 3 gives the geometric characteristics of each control
mesh and the rendering performance of the CPU and GPU
implementations. There are 30×30 sampling parameters on
each face in every case.

The performance of our rendering technique is linearly
dependent on the number of faces in the control mesh. It is also
affected by the number of sampling parameters on each face,
and this relationship is shown in Fig. 13. Our experimental
results suggest that our GPU-based implementation runs about

(a) (b)

(c) (d)

(e) (f)

Fig. 12. Control meshes and corresponding blend surfaces.

Table 3. Geometric information and rendering performance.

Mesh
Number
of charts

Number
of faces GPU fps CPU fps

GPU/
CPU

(a) 16 32 438.2 25.40 17.25

(c) 176 179 73.0 3.84 19.01

(e) 442 442 30.1 1.48 20.33

Fig. 13. Comparative performance of CPU and GPU
implementations using different numbers of sampling
parameters on each face of example in Fig. 12(c).

10×10 14×14 20×20 24×24
Number of sampling parameters

400

350

300

250

200

150

100

50

0

FP
S

CPU
GPU

ETRI Journal, Volume 33, Number 1, February 2011 Dae-Hyun Ko et al. 97

Fig. 14. Blending surface with various sharp features. Marked
edges are shown in red.

v1

v1

v2

v2 v3 v3

v4 v4

v5 v5

v6

v6 v8

v8

v7

v7

(a) (b)

(c) (d)

Table 4. Local geometries for vertices in example of Fig. 14(a).

Local geometry Vertices

Surface patch All vertices not connected by sharp edges

Vertex v1, v2, v3, v4, v5, v6, v7,
Bézier curve v8

18 to 20 times faster than its CPU-based counterpart.

Figure 14 shows an example of a complicated blending
surface which exhibits all the types of sharp features that we
allow: the dart, crease, and corner. Figures 14(a) and (b) show
the sharp edges (in red) selected by the user in two different
views. Table 4 gives the local geometries of the connected
vertices. Although the edge joining v2 and v3 is not shown to be
selected in Fig. 14(a), a dart is generated in the blending surface
as shown in Fig. 14(c). This is because the local geometries of
v2 and v3 are defined to be vertices. Figure 14(d) shows a
crease across the surface which is generated by simultaneously
blending a Bézier curve, vertex, and local patch.

VII. Conclusion

We have extended the blending scheme of Ying and Zorin
[5] to include sharp features. Depending on the number of
sharp edges that meet at a vertex, sharp features in the form of a
dart, crease, or corner are generated by blending the local
geometry appropriately.

We have also presented an efficient technique for rendering a
blended surface using a vertex program on a GPU, yielding an
eighteen-fold to twenty-fold increase in rendering speed
compared to a CPU-based implementation. Since each face of
the control mesh is rendered as a separate entity, the surface can
easily be trimmed in a fragment program using a texture.

Our current CPU implementation does not use acceleration
techniques, such as multiple cores and multi-threading, which
would considerably increase the rendering speed. We plan to
apply these techniques to the CPU implementation. We also
intend to utilize the geometric programming facilities recently
introduced in Shader 4.0 to improve the performance of our
algorithm on the latest GPUs.

References

[1] M. Guthe, A. Balas, and R. Klein, “GPU-Based Trimming and
Tessellation of NURBS and T-Spline Surface,” ACM Trans.
Graphics, vol. 24, no. 3, 2005, pp. 1016-1023.

[2] A. Krishnamurthy, R. Khardekar, and S. McMains. “Direct
Evaluation of NURBS Curves and Surfaces on the GPU,” Proc.
ACM Symp. Solid Physical Modeling, 2007, pp. 329-334.

[3] C. Sigg et al., “GPU-Based Ray-Casting of Quadratic Surfaces,”
Proc. Eurographics Symp. Point-Based Graphics, 2006, pp. 59-
65.

[4] Y. Yasui and T. Kania, “Surface Quality Assessment of
Subdivision Surfaces on Programmable Graphics Hardware,”
Proc. Int. Conf. Shape Modeling Appl., 2004, pp. 129-136.

[5] L. Ying and D. Zorin, “A Simple Manifold-Based Construction of
Surfaces of Arbitrary Smoothness,” ACM Trans. Graphics, vol.
23, no. 3, 2004, pp. 271-275.

[6] H. Biermann, A. Levin, and D. Zorin. “Piecewise Smooth
Subdivision Surface with Normal Control,” Proc. ACM Siggraph,
2000, pp. 113-120.

[7] T. DeRose, M. Kass, and T. Truong, “Subdivision Surfaces in
Character Animation,” Proc. ACM Siggraph, 1998, pp. 85-94.

[8] H. Hoppe et al., “Piecewise Smooth Surface Reconstruction,”
Proc. ACM Siggraph, 1994, pp. 295-302.

[9] G.-D. Vecchia and B. Jüttler, “Piecewise Rational Manifold
Surfaces with Sharp Features,” Proc. 13th IMA Int. Conf. Math.
Surfaces XIII, 2009, pp. 90-105.

[10] C. Grim and J. Hughes, “Modeling Surfaces of Arbitrary
Topology Using Manifolds,” Proc. ACM Siggraph, 1995, pp.
359-368.

[11] C. Grim, “Simple Manifolds for Surface Modeling and
Parameterization,” Proc. Shape Modeling Int., 2002, p. 237.

[12] C. Grim, J. Crisco, and D. Laidlaw, “Fitting Manifold Surfaces to
3D Point Clouds.” J. Biomech. Eng., vol. 124, no. 1, 2002, pp.
136-140.

[13] J. Cotrina and N. Pla, “Modeling Surfaces from Meshes of

98 Dae-Hyun Ko et al. ETRI Journal, Volume 33, Number 1, February 2011

Arbitrary Topology,” Computer Aided Geometric Design, vol. 17,
no. 7, 2000, pp. 643-671.

[14] J. Cotrina, N. Pla, and M. Vingo, “A Generic Approach to Free
Form Surface Generation,” Proc. ACM Symp. Solid Modeling
Appl., 2002, pp. 35-44.

[15] X. Gu, Y. He, and H. Qin, “Manifold Spline,” Proc. ACM Symp.
Solid Physical Modeling, 2005, pp. 27-38.

[16] G.-D. Vecchia, B. Jüttler, and M.-S. Kim, “A Construction of
Rational Manifold Surfaces of Arbitrary Topology and
Smoothness from Triangular Meshes,” Computer Aided
Geometric Design, vol. 25, no. 9, 2008, pp. 801-815.

[17] H.-F. Pabst et al., “Ray Casting of Trimmed NURBS Surfaces on
the GPU,” Proc. IEEE Symp. Interactive Ray-Tracing, 2006, pp.
151-160.

[18] T. Kanai et al., “GPU-Based Rendering of Sparse Low-Degree
Implicit Surfaces,” Proc. 4th Int. Conf. Computer Graphics
Interactive Techniques in Australasia and Southeast Asia, 2006,
pp. 165-171.

[19] F. Reck et al., “Real-Time Isosurface Extraction with Graphics
Hardware,” Proc. Eurographics, 2004, pp. 33-36.

[20] J. Bolz and P. Schröder, “Evaluation of Subdivision Surfaces on
Programmable Graphics Hardware,” 2003, submitted for
publication.

[21] NVIDIA, Inc. NVIDIA, Cg Toolkit User’s Manual, 2006.

Dae-Hyun Ko received his BS in computer
engineering from Seoul National University in
1999 and the MS and PhD in computer science
and engineering from Seoul National University
in 2001 and 2007, respectively. He is currently a
senior engineer at Digital Media and
Communications R&D Center, Samsung

Electronics. His research interests are in computer graphics and
geometric modeling.

Jieun Lee received the BS in computer science
and engineering from Ewha Womans
University in 1997, the MS from POSTECH in
1999, and the PhD from Seoul National
University in 2007. From 1999 to 2002, she
worked at LG Electronics Institute of
Technology as a research engineer and mainly

participated in the MPEG-7 standardization activity. She is currently an
assistant professor at the School of Computer Engineering, Chosun
University, Korea. Her research interests are in geometric modeling,
computer graphics, and multimedia information processing.

Seong-Jae Lim received the BS in computer
engineering from Chonnam National University,
Korea, in 1999, and the PhD in information and
communication engineering from Gwangju
Institute of Science and Technology, Korea, in
2006. From 2004 to 2005, he was a visiting
scholar at the Medical Image Processing

Laboratory, University of Pennsylvania. He is currently a senior
member of the engineering staff of the Computer Graphics Research
Team at ETRI. His research interests are in computer vision, computer
graphics, and medical imaging.

Seung-Hyun Yoon received the BS in
mathematics from Hanyang University in 2001
and the PhD in computer science and
engineering from Seoul National University in
2007. He is currently an assistant professor of
the Department of Multimedia Engineering,
Dongguk University. His research interests are

in computer graphics and geometric modeling.

