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We construct surfaces with darts, creases, and corners 
by blending different types of local geometries. We also 
render these surfaces efficiently using programmable 
graphics hardware. Points on the blending surface are 
evaluated using simplified computation which can easily 
be performed on a graphics processing unit. Results show 
an eighteen-fold to twenty-fold increase in rendering speed 
over a CPU version. We also demonstrate how these 
surfaces can be trimmed using textures. 
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I. Introduction 

Modern graphics processing units (GPUs) have a 
programmable graphics pipeline which allows various 
rendering tasks in computer graphics and animation to be 
addressed at a higher level than hitherto. One such task is the 
direct rendering of application-oriented shape representations, 
such as non-uniform rational B-spline (NURBS) surfaces, 
implicit surfaces, and subdivision surfaces. These formulations 
are compact and allow differential properties to be computed 
with precision. However, these advantages may be outweighed 
by the need to tessellate such surfaces for rendering. To avoid 
this drawback, many GPU-based techniques [1]-[4] for 
rendering analytic surfaces directly have been proposed.  

In this context, our current concern is the manifold-based 
blending surface construction scheme recently proposed by 
Ying and Zorin [5]. They construct a C∞-continuous surface by 
blending local geometries on overlapping charts. This new 
technique provides many advantages, such as analytical 
formulae for surface properties, simplicity, and local control. 
However, the evaluation of points on one of these blends 
requires rather involved computations of evaluation parameters, 
local geometries, and blending functions. However, we note 
that most of these operations can easily be performed by a 
GPU. 

We extend the scheme of Ying and Zorin [5] to propose a 
blending surface that can represent sharp features, such as darts, 
corners, and creases. In subdivision surfaces, features of this 
sort can be realized by applying different subdivision rules [6]-
[8]. However, very little effort has been applied to the 
expression of sharp features in blending surfaces [9]. We 
address this problem with a technique in which features of this 
sort are initially created as sharp edges on a control mesh. 
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Depending on the topology of these edges, different types of 
local geometries, such as points, curves, or surface patches, are 
created. These are then blended together to generate the 
required features.  

We go on to present an efficient algorithm for rendering and 
trimming our extended blending surfaces using a GPU. Points 
on the surface are evaluated by a repetitive sequence of matrix 
and vector computations which can easily be implemented in a 
GPU. Experimental results show an eighteen-fold to twenty-
fold increase in rendering speed, compared with a CPU-based 
implementation. We also demonstrate how these new surfaces 
can be trimmed in the GPU using textures. 

The rest of this paper is organized as follows. In section II, 
we review related recent work. In section III, we briefly 
summarize the blending scheme proposed by Ying and Zorin 
[5]. Our extension of their scheme to sharp features is 
explained in section IV. We then propose an efficient algorithm 
for rendering and trimming a blended surface in section V and 
compare the performance of GPU-based and CPU-based 
implementations in section VI. Finally, we conclude this paper 
in section VII.  

II. Related Work 

We look first at blends based on manifold theory and then 
briefly review GPU-based techniques for rendering related 
surface representations. 

1. Blending Surfaces 

Grim and Hughes [10] used a technique based on the 
concept of the manifolds to construct surfaces of arbitrary 
topology. This technique has subsequently been applied to the 
parameterization of surfaces [11] and to the fitting of surfaces 
to point cloud data [12]. Cotrina and Pla [13] described a 
similar algorithm for constructing Ck-continuous surfaces with 
boundary curves of B-spline form. This formulation may be 
seen as a generalized B-spline surface. An even more general 
version of this approach was subsequently proposed by Cotrina 
and others [14], which can produce three different types of 
surfaces. However, these techniques require complicated 
transition functions. 

Ying and Zorin [5] have introduced a technique for 
constructing a smooth surface of arbitrary topology by 
constructing charts in the complex plane and combining them 
with transition functions with simple forms. This approach 
provides both ∞C continuity and local control of the surface; 
moreover, the resulting surfaces are visually satisfactory. This is 
the jumping-off point for our technique. Gu and others [15] 
have put forward a theoretical and computational framework 

for manifold splines defined on a control mesh of arbitrary 
topology. They also provided a practical algorithm for creating 
a triangular B-spline surface on such a control mesh. 

A new approach to the construction of rational manifold 
surfaces has been proposed by Vecchia and others [16]. Their 
surfaces consist of rational tensor-product and triangular 
surface patches, which are combined using transition functions 
obtained by sub-chart parameterization. Recently, Vecchia and 
Jüttler [9] further extended this technique to include different 
types of sharp features. We also aim to generate sharp features 
on a blending surface, but our technique is different, and we 
also consider the computational aspects in more detail. 

2. Rendering Using a GPU 

The capability of modern GPUs to perform general 
computations has been widely used, and GPU-based rendering 
techniques have recently been proposed for several shape 
representations. Guthe and others [1] put forward a GPU-based 
technique for rendering and trimming spline surfaces 
approximated by bicubic Bézier surfaces. Points on the latter 
are computed in a vertex program, and the surface is then 
trimmed using a texture in a fragment program. However, their 
technique cannot render the spline surface exactly since it has 
to be approximated. Krishnamurthy and others [2] computed 
points on a trimmed NURBS surface directly using a fragment 
program. They store the control points, the knot vectors, and 
pre-computed values of the basis functions for sampled 
parameters in texture memory and compute points on the 
surface at the fragment programming stage. Although their 
technique shows a fifty-fold increase in rendering speed over a 
CPU version, the values of the basis functions must be pre-
computed and maintained during rendering. This contrasts with 
our blending approach, in which local geometries are evaluated 
efficiently in the GPU. A GPU-based technique for rendering 
of spline surfaces by ray-casting was proposed by Pabst and 
others [17]. They render the convex hull of a spline surface, 
and only the fragments in which a ray intersects the surface are 
subsequently shaded in a fragment program. 

Turning to implicit surfaces, Sigg and others [3] presented a 
GPU-based technique for ray-casting quadrics, and Kanai and 
others [18] have suggested a method for ray-casting sparse 
low-degree implicit surfaces. In the latter, intersections of rays 
with the surface are computed in a fragment program. A GPU-
based method for rendering iso-surfaces extracted from 
tetrahedral grids has been proposed by Reck and others [19]. 
Tetrahedra are streamed into a vertex program which extracts 
the iso-surface for a given value and renders it immediately. 

Yasui and others [4] introduced GPU-based rendering for the 
reflection lines of a subdivision surface, and Bolz and others 
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[20] have put forward a technique for computing points on a 
Catmull-Clark subdivision surface using a GPU. In the latter 
technique, tessellations of the basic functions are precomputed 
and stored in texture memory. At run-time, a fragment program 
receives the control mesh and evaluates the corresponding 
subdivision surface. 

III. Manifold-Based Blending 

Now we will summarize the approach of Ying and Zorin [5] 
to constructing a blending surface.  

1. Charts 

For each vertex vi of a control mesh, a chart Ui is defined as a 
subset of the complex plane whose shape depends on the 
valence k of the vertex. Figure 1 shows the construction of a 
chart for a vertex of valence 6. The chart is formed by 
transforming a unit square [0, 1]×[0, 1] in the complex plane 
using the conformal mapping 4 / kz z→ (Fig. 1(b)) and then 
rotating them through an angle 2 /h kφ π=  as follows   
(Fig. 1(c)): 
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where (cos sin ) [0,1] [0,1]z r iθ θ= + ∈  ×  , and h is a counter-
clockwise index which enumerates the edges connected to the 
vertex vi. The final chart Ui is the union of these transformed 
 

 

Fig. 1. Constructing the chart for a vertex of valence 6. 
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squares for h = 0, 1, …, k–1 (Fig. 1(d)). 
If the control mesh has quadrilateral faces, then each face has 

four corresponding charts. To compute the local geometry and 
blending function on each chart, a sampling parameter z in a 
unit square is transformed to an evaluation parameter zi on each 
chart Ui, i = 1, 2, 3, 4 (see section V.2 for more details). 

2. Local Geometries 

A local geometry Pi(z): Ui → R3 is defined on each chart to 
represent the shape of a blending surface around a vertex vi as 
follows:  

, , ,( ) [ ( , ) ( , ) ( , )] ,T
i i x i y i zP z p u v p u v p u v=  

where the parameters u and v are the real and imaginary parts 
of z ∈ Ui , respectively. Ying and Zorin [5] use polynomials of 
high degree to represent local geometries that approximate the 
subdivision surface of a control mesh, whereas we employ 
different types of local geometry on each chart (see section IV.1 
for more details). 

3. Blending Functions 

On each chart Ui, we define a smooth blending function   
wi(z): Ui →R, such that wi(z)=1 at z=0+i0 and wi(z)=0 at z ∂∈ Ui, 
where ∂Ui is the boundary of chart Ui. We formulate a 
univariate scalar function η(t) and then construct a blending 
function over the unit square [0, 1]×[0, 1] as a product of 
η(u)η(v). The final blending function wi(z) is then constructed 
by mapping η(u)η(v) to Ui; the form of this mapping depends 
on the valence of the vertex vi. Figure 2 shows the construction 
of the blending function for a vertex of valence 6. Ying and 
Zorin [5] use a function η(t) which is infinitely differentiable at 
t=0 and t=1 to construct a C∞-continuous blending surface, 
whereas we employ a Hermite interpolant to facilitate a GPU 
implementation. 

The final surface is constructed by blending all the local 
geometries together. For a given parameter value z in the unit 
square [0, 1]×[0, 1] that corresponds to a face, a point S(z) on 
the surface is computed as   

4
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Fig. 2. Construction of a blending function wi(z): tone shows
value, from black (0) to white (1). 
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where zi is the corresponding parameter on each of the charts 
Ui, i=1, 2, 3, 4, that share the face (see Fig. 9), and Pi(zi) are the 
local geometries. 

IV. Extending Blending Surface to Incorporate Sharp 
Features 

We now extend the formulation of the blending surface 
described above to model sharp features.  

1. Local Geometries 

We take a new approach to the definition of local geometries. 
Edges on a control mesh can be labeled as sharp by the user, 
and then a different type of local geometry is created on each 
chart, which depends on the number and configuration of the 
sharp edges that meet at a vertex. Figures 3(a), (b), (c), and (d) 
show how sharp edges influence the local geometry.  

Let n be the number of sharp edges that meet at a vertex vi. 
For n=0, we use a surface patch Pi(z): Ui→R3 as the local 
geometry on the corresponding chart Ui. This patch has the 
following bi-quadratic polynomial representation, which 
approximately interpolates the positions of the vertices 
neighboring vi: 

1,1 1,2 1,3
2

2,1 2,2 2,3
2

3,1 3,2 3,3

1
( ) 1 ,
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       (2) 

where , , , , ,
Ti i i i

m n m n m n m nx y z⎡ ⎤= ⎣ ⎦c  and the parameters u 

and v are the real and imaginary parts of z ∈ Ui , respectively. 
 

The coefficient vectors ,
i
m nc in (2) can be determined by 

minimizing the following functional: 

2
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subject to Pi(0+i0)=vi, where k is the valence of a vertex vi, and 
vl

i is the l-th neighboring vertex of vi. The constraint 
Pi(0+i0)=vi forces the coefficient 1,1

ic  to be vi, so that the 
surface goes through the vertex vi, which is the origin of each 
chart. Figure 4(a) shows the vertices of a control mesh around 
the vertex vi, and Fig. 4(b) shows the corresponding surface 
patch, which passes through the central vertex vi. 

For n=1 or n≥3, we simply take the vertex vi itself as the 
local geometry: 

( ) ,   for all  .i i iP z z U= ∈v  

In the special case in which all local geometries are vertices of 
a control mesh, the blending surface will be the original control 
mesh itself. 

When n=2, we take a quadratic Bézier curve Pi(z) as the 
local geometry: 

2
2

0

( ) ( ( )),i
i j j i

j

P z B zσ
=

= ∑q             (3) 

where i
jq  are control points, and 2 ()jB  are quadratic 

Bernstein basis functions. If e1=(vj, vi) and e2=(vi, vk) are the 
first and second sharp edges of vi , respectively, then the control 
points are determined as  

0 1 2, , and i i i
j i k= = =q v q v q v . 

The curve parameter for z ∈ Ui is computed by a function  
 

 

Fig. 3. Creating different types of sharp feature by blending different types of local geometry. Sharp edges are shown in red. 

(a) (b) (c) (d) 

(e) (f) (g) (h) 



ETRI Journal, Volume 33, Number 1, February 2011 Dae-Hyun Ko et al.   93 

 

Fig. 4. Local geometry: (a) vertex vi and its neighboring vertices
and (b) constructed surface patch Pi(z). 
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Table 1. Extended local geometries. 

Numbers of sharp edges Sharp features Local geometry

0 Smooth Surface patch 

1 Dart Point 

2 Crease Curve 

≥3 Corner Point 

 
 

( ) : [0,1]i iz Uσ →   (see section V.3). 
Table 1 lists the possible local geometries and the 

corresponding sharp features that result. A smooth region is 
created when four surface patches are blended (Fig. 3(e)), and a 
dart is created between two vertices which share a sharp edge 
(Fig. 3(f)). A crease is created when a quadratic curve is 
blended with other types of local geometries (Fig. 3(h)), and a 
corner is created at the vertex when n≥3 (Fig. 3(g)). 

2. Blending Functions 

We take a similar approach to the construction of a blending 
function to Ying and Zorin [5] (see section III.3). Our only 
deviation from their scheme is to use the Hermite interpolant 
η1(t)=2t3–3t2+1, as shown in Fig. 5. To create a Ck-continuous 
blending surface, η1(t) and η2(t) (=η1(1–t)) need to be Ck-
continuous at t=0 and t=1, respectively. Since η′1(0)=η′2(0) and  

 

Fig. 5. Hermite interpolants with η'1(0)=η'2(0) and η'1(1)=η'2(1)
producing a C1-continuous blending surface. 
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Fig. 6. Blending functions using Hermite interpolant on charts of 
valence: (a) 6 and (b) 3. 
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η′1(1)=η′2(1), the Hermite interpolant guarantees that the resulting 
surface is C1-continuous, except at the sharp features defined 
by the user. We use Hermite functions because they can be 
evaluated by modern GPUs, which allows our blending 
scheme to be implemented efficiently as a vertex program. 
Figures 6(a) and (b) show the blending functions on charts with 
different valences using the Hermite interpolant η1(t).  

V. GPU-Based Evaluation and Rendering 

We now show how to evaluate points on the blending 
surface using programmable graphics hardware. The overall 
flow of the algorithm is shown in Fig. 7. 

1. Preprocessing  

We start by computing the coefficients of the local 
geometries for all the vertices of a control mesh and then create 
a texture image from their coefficients (in the RGB channels). 
This is done in the CPU. Figure 8 shows the coefficients of 
different types of local geometry stored in a texture image with 
9 rows and w columns, where w is the number of vertices of 
the control mesh. The texture images are then transmitted to the 
texture memory of the GPU. 
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Fig. 7. Algorithm for evaluating and rendering trimmed blending
surface. 
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Fig. 8. Coefficients of local geometries for charts Ui, Uj, and Uk
stored in a texture image. Pi is a surface patch, Pj is a
curve, and Pk is the vertex vk. 
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2. Computing Evaluation Parameters 

As shown in Fig. 7, the evaluation process starts with the 
transmission of sampling parameters to a vertex program in the 
graphics pipeline. We assume that the parametric domain of 
each face is a unit square [0, 1]×[0, 1] on which the parameter 

viuz ˆˆˆ +=  is uniformly sampled as shown in Fig. 9. The 
values of the sampling parameter viuz ˆˆˆ +=  are then 
transformed to the coordinates i i iz u iv= +  on each chart Ui, 
i = 1, 2, 3, 4, that corresponds to the face. For this, four polar  

 

Fig. 9. Sampling parameter ẑ = û + ˆiv on unit square transformed to
evaluation parameter zi on each chart Ui, i = 1, 2, 3, 4. 
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coordinates ˆˆˆ ( , ),i i iz r θ=  i = 1, 2, 3, 4, expressed in the 
coordinate system of each chart, are computed as 
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The evaluation parameters on a chart of valence ki are 
computed in polar form zi=(ri, θi) on each chart Ui, i = 1, 2, 3, 4, 
as 

).,()/ˆ4,ˆ())ˆsinˆ(cosˆ()ˆ( /4/4/4
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k
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k
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k
ii rkrrzz iii θθθθ ==+==  

To compute points on the local geometries, the evaluation 
parameters need to be represented in the form zi=ui+ivi on the 
corresponding chart Ui. To achieve this, we form a 4×4 
diagonal matrix R with diagonal elements ri and a 4×2 matrix 
Θ with sine and cosine of θi. The final evaluation parameter 
zi=ui+ivi on each chart Ui, i = 1, 2, 3, 4, is computed as 

1 1 1 1 1

2 2 2 2 2
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Since GPUs provide an efficient mechanism for evaluating 
sin, cos, and atan2 functions, together with multiplication of 
vectors and matrices which are built-in data types, the 
evaluation parameters zi=ui+ivi can be computed very 
efficiently. Once the four evaluation parameters have been 
determined, we can evaluate points on the local geometries and 
the blending functions. 
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3. Evaluation of Local Geometries 

It would be inefficient to employ different procedures for 
evaluating each of the three types of local geometry. We will 
now show how a unified evaluation procedure can be used for 
all three types of local geometry without reducing the 
efficiency of the GPU. This evaluation procedure consists of 
three steps: 

Step 1. Fetch the texture memory and recover the coefficient 
matrix used in (2). 

Step 2. Form the two vectors in (2) to match the specific type 
of local geometry. 

Step 3. Evaluate the local geometry by performing the vector 
and matrix multiplications specified in (2). 

When n=1 or n≥3, the local geometry Pi(z) is the vertex vi 
itself. Since vi is stored in the top row of the texture image, the 
local geometry vi (= 1,1

ic ) can be computed using (2) by setting 
the evaluation parameter zi to 0 + i0. 

When n=0, we form the two vectors of the monomial basis 
functions in (2) from the evaluation parameter zi=ui+ivi in  
step 2 and then compute a point on the surface patch Pi(zi) in 
step 3. Two matrix-vector multiplications are required for each 
coordinate, making a total of six operations. 

When n=2, the curve parameters σi(z) in (3) have to be 
determined to evaluate a point on the Bézier curve Pi(z), which 
is the local geometry of the chart Ui. The curve parameter σi(z) 
on each chart Ui can be computed directly using sampling 
parameters. If ẑ  is a sampling parameter of a face f, then the 
curve parameter ˆ( ) ( ( ))i iz zσ σ=  is determined as  

1 0 1

2 1 2

1 2

ˆ0.5 cos ,         if ( , ) ,
ˆ( ) ˆ0.5 cos ,         if ( , ) ,

0.5,                        if  and ,  

i i

i i
i

z e f
z z e f

e f e f

θ
σ θ

⎧ − = ∈
⎪

= + = ∈⎨
⎪

∉ ∉⎩

q q

q q  (4) 

where e1 and e2 are the edges connected to the vertex 
1( )i

i =v q  which are labeled as sharp, and θ  is the angle 
between ẑ  and the sharp edge on the face f. Figure 10 shows 
how to determine the curve parameters ˆ( )i zσ  of 0ˆ ,z f∈  
which can be computed from the expression ˆ0.5 cosz θ−  
since e1 ∈ f0. Similarly, the curve parameters of 1ẑ f∈  can be 
computed from ˆ0.5 cosz θ+  since e2∈f1. However, the curve 
parameters of 2ẑ f∈  are 0.5 since e1∉ f2 and e2∉ f2.  

The control points for a Bézier curve Pi(z) are stored in   
the first three rows of the texture image. Therefore, a point   
on the curve can be evaluated by replacing the two      
vectors of the monomial basis functions with [1 0 0]       

and 2 2 2
0 1 2( ) ( ) ( ) ,

T
i i iB B Bσ σ σ⎡ ⎤

⎣ ⎦  respectively, in step 2. 

Table 2 lists the different pairs of vectors that must be formed 
in step 2 to evaluate different types of local geometry. 

 

Fig. 10. Evaluation parameter σi(z) computed from the sampling
parameters viuz ˆˆˆ += of a face when a quadratic Bézier
curve Pi(z) is the local geometry of a vertex vi. 
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Table 2. Pairs of vectors used in step 2 for different configuration of 
edges. 

Number of 
sharp edges 1st vector 2nd vector 

0 
21 i iu u⎡ ⎤

⎣ ⎦  21
T

i iv v⎡ ⎤
⎣ ⎦  

1 or≥3 1 0 0⎡ ⎤⎣ ⎦  1 0 0 T
⎡ ⎤⎣ ⎦  

2 1 0 0⎡ ⎤⎣ ⎦  2 2(1 ) 2(1 )
T

i i i iσ σ σ σ⎡ ⎤− −⎣ ⎦

 

 
4. Blending Local Geometries 

The final blending surface is then constructed by blending 
four points from the local geometries. This requires computing 
the blending functions wi(zi) for these points. Since we use a 
Hermite interpolant, we can use the Hermite interpolation 
function provided by the shading language of the GPU. First 
we form a 3×4 matrix P from the points on the local 
geometries and a 4D vector w from the blending functions wi, 
which we have already computed. The final blended point p 
can then be computed in a single matrix and vector 
multiplication as follows:  

1
1, 2, 3, 4,

2
1, 2, 3, 4,

3
1, 2, 3, 4,

4

.
x x x x

y y y y

z z z z

w
p p p p

w
P p p p p

w
p p p p w

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥= = ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

p w       (5) 

5. Trimming  

Since the sampling parameters are sampled in a unit square  
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Fig. 11. (a) Trimming texture and (b) trimmed blending surface.

(a) (b) 

 
 
[0, 1]×[0, 1] for each face, we can easily trim the surface using 
a trimming texture in a fragment program. As shown in    
Fig. 11(a), a trimming texture is a binary image in which the 
region to be trimmed is colored black. The vertex program 
returns the sampling parameters viuz ˆˆˆ +=  to the graphics 
pipeline, and these are interpreted as texture coordinates )ˆ,ˆ( vu  
of the blending surface. The linearly interpolated texture 
coordinates are then used in a fragment program to create 
fragments that will not be rendered. A trimming texture and a 
trimmed blending surface are shown in Figs. 11(a) and (b), 
respectively.  

VI. Experimental Results 

We implemented the part of our rendering algorithm that 
runs on the CPU in C++, and the part that runs on the GPU 
was implemented in the Cg shading language [21]. The CPU 
that we used was a Pentium-IV running at 3.2 GHz with a    
1 Gb main memory, and the GPU was an NVIDAI GeForce 
6800 Ultra.  

Figures 12(a), (c), and (e) show some example control 
meshes, and Figs. 12(b), (d), and (f) show the resulting 
blending surface generated by our GPU-based implementation. 
The performance of our rendering technique is not influenced 
by the types of local geometry to be blended because the 
computations are the same for all the geometries, which is  
because we use the unified evaluation procedure described in 
section V.3. We measured the rendering speed for blending 
surfaces without sharp features. 

Table 3 gives the geometric characteristics of each control 
mesh and the rendering performance of the CPU and GPU 
implementations. There are 30×30 sampling parameters on 
each face in every case. 

The performance of our rendering technique is linearly 
dependent on the number of faces in the control mesh. It is also 
affected by the number of sampling parameters on each face, 
and this relationship is shown in Fig. 13. Our experimental 
results suggest that our GPU-based implementation runs about  

 

(a) (b) 

(c) (d) 

(e) (f) 

Fig. 12. Control meshes and corresponding blend surfaces.  
 

Table 3. Geometric information and rendering performance. 

Mesh 
Number 
of charts

Number 
of faces GPU fps CPU fps

GPU/ 
CPU 

(a) 16 32 438.2 25.40 17.25 

(c) 176 179 73.0 3.84 19.01 

(e) 442 442 30.1 1.48 20.33 

 

 

Fig. 13. Comparative performance of CPU and GPU 
implementations using different numbers of sampling 
parameters on each face of example in Fig. 12(c). 
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Fig. 14. Blending surface with various sharp features. Marked 
edges are shown in red. 

v1 

v1 

v2 

v2 v3 v3 

v4 v4

v5 v5 

v6 

v6 v8 

v8 

v7 

v7 

(a) (b) 

(c) (d) 

 
 

Table 4. Local geometries for vertices in example of Fig. 14(a). 

Local geometry Vertices 

Surface patch All vertices not connected by sharp edges 

Vertex v1, v2, v3, v4, v5, v6, v7, 
Bézier curve v8 

 

 
18 to 20 times faster than its CPU-based counterpart. 

Figure 14 shows an example of a complicated blending 
surface which exhibits all the types of sharp features that we 
allow: the dart, crease, and corner. Figures 14(a) and (b) show 
the sharp edges (in red) selected by the user in two different 
views. Table 4 gives the local geometries of the connected 
vertices. Although the edge joining v2 and v3 is not shown to be 
selected in Fig. 14(a), a dart is generated in the blending surface 
as shown in Fig. 14(c). This is because the local geometries of 
v2 and v3 are defined to be vertices. Figure 14(d) shows a  
crease across the surface which is generated by simultaneously 
blending a Bézier curve, vertex, and local patch.  

VII. Conclusion 

We have extended the blending scheme of Ying and Zorin 
[5] to include sharp features. Depending on the number of 
sharp edges that meet at a vertex, sharp features in the form of a 
dart, crease, or corner are generated by blending the local 
geometry appropriately. 

We have also presented an efficient technique for rendering a 
blended surface using a vertex program on a GPU, yielding an 
eighteen-fold to twenty-fold increase in rendering speed 
compared to a CPU-based implementation. Since each face of 
the control mesh is rendered as a separate entity, the surface can 
easily be trimmed in a fragment program using a texture. 

Our current CPU implementation does not use acceleration 
techniques, such as multiple cores and multi-threading, which 
would considerably increase the rendering speed. We plan to 
apply these techniques to the CPU implementation. We also 
intend to utilize the geometric programming facilities recently 
introduced in Shader 4.0 to improve the performance of our 
algorithm on the latest GPUs. 
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