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Abstract - Catmull-Clark subdivision scheme provides a powerful method for building smooth and complex surfaces. But the 
number of faces in the uniformly refined meshes increases exponentially with respect to subdivision depth. Adaptive 
tessellation reduces the number of faces needed to yield a smooth approximation to the limit surface and, consequently, makes 
the rendering process more efficient. In this paper, we present a new adaptive tessellation method for general Catmull-Clark 
subdivision surfaces. Different from previous control mesh refinement based approaches, which generate approximate meshes 
that usually do not interpolate the limit surface, the new method is based on direct evaluation of the limit surface to generate 
an inscribed polyhedron of the limit surface. With explicit evaluation of general Catmull-Clark subdivision surfaces becoming 
available, the new adaptive tessellation method can precisely measure error for every point of the limit surface. Hence, it has 
complete control of the accuracy of the tessellation result. Cracks are avoided by using a recursive color marking process to 
ensure that adjacent patches or subpatches use the same limit surface points in the construction of the shared boundary. The 
new method performs limit surface evaluation only at points that are needed for the final rendering process. Therefore it is 
very fast and memory efficient The new method is presented for the general Catmull-Clark subdivision scheme. But it can 
be used for any subdivision scheme that has an explicit evaluation method for its limit surface.
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1. Introduction

Subdivision surfaces have become popular recently 
in graphical modeling and animation because of their 
capability in modeling/representing complex shape of 
arbitrary topology [2], their relatively high visual 
quality, and their stability and efficiency in numerical 
computation. Subdivision surfaces can model/represent 
complex shape of arbitrary topology because there is 
no limit on the shape and topology of the control mesh 
of a subdivision s니而ce.

With the parametrization technique for subdivision 
surfaces becoming available [4] and with the fact that 
non-uniform B-spline and NURBS surfaces are special 
cases of subdivision surfaces becoming known [16], 
we now know that subdivision surfaces cover both 
parametric forms and discrete forms. Parametric forms 
are good for design and representation, discrete forms 
are good for machining and tessellation [1]. Hence, we 
have a representation scheme that is good for all 
graphics and CAD/CAM applications.

Subdivision based evaluation process of a subdivision 
surface relies on performing repeated s니bdivision of 
the control mesh until the refined mesh is close enough 
to the limit surface (within some given tolerance). It is 
then possible to push the control points (mesh vertices) 
to their limit positions. But the number of faces in the
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uniformly refined meshes increases exponentially with 
the recursive steps of subdivision. See Fig. 5(a) for an 
example where the control mesh of a Gargoyle is 
uniformly subdivided only twice and yet the resulting 
mesh is already quite dense. Hence, a good method for 
reducing the number of faces in the refined mesh while 
keepin흥 the precision of the approximation is necessary. 
For instance, in Figs. 5(b), 5(c), and 5(d), the same 
model is adaptively subdivided 4, 3 and 2 times, 
respectively. The resulting meshes have a higher or 
similar precision while the number of facets in the 
resulting meshes is much less than the uniform case. 
Such a method is important for both rendering and 
finite-element mesh generation. The criterion for 
rendering, however, is different from the criterion fbr 
finite-element mesh generation. In the first case, the 
number of sides of the mesh faces could be different 
while, in the second case, the mesh faces are either all 
triangles or all quadrilaterals. Fig. 5(e) shows a trian­
gulated result of Fig. 5(d).

Research work fbr reducing the n나mber of faces in a 
mesh has been done in several directions. Mesh simpli­
fication [8] is the most popular one over the past 
decade. It aims at removing some of the overly sampled 
vertices in a mesh and produces approximate meshes 
with various levels of detail. Another main method for 
reducing the number of faces in a mesh, called 
adaptive tessellation, is to apply adaptive or local 
refinement schemes to areas specified by a 니ser or 
determined by an application. The resulting mesh sho니Id 
be crack-free and have the same limit surface as the 
uniformly refined mesh.
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There are two possible approaches for adaptive 
tessellation of subdivision surfaces. One is a mesh refinement 
based approach. It approximates the limit surface by 
adaptively refining the control mesh of the surface. The 
res니Iting mesh 니sually does not interpolate points of the 
limit surface. The other one is a surface evahhitioH based 
approach. This approach approximates the limit surfece 
by generating an inscribing polyhedron of the limit 
surface, with vertices of the polyhedron taken (evaluated) 
adaptively from the limit surface. The mesh refinement 
based approach needs a subdivision scheme, such as the 
Catmull-Clark method or the Doo-Sabin method, to 
refine the input mesh. Most methods proposed in the 
literature for adaptive tessellation of s니bdivision surfaces 
belong to this category. The second approach needs a 
parametrization/evaluation method for the limit surface. 
With the availability of direct evaluation methods of 
subdivision surfaces recently [4-7], the second approach 
could be more appealing for adaptive tessellation of 
subdivision surface because of its simplicity in nature. 
Currently there is only one paper published in this 
category [11]. This paper works for parametrization that 
reproduces linear functions [19].

In this paper we will present a surface evaluation 
based approach for adaptive tessellation of subdivision 
surfaces. Our method is different from [11] in that our 
method works with any parametrization method and 
has a precise error estimate. The new approach is 
presented for the general Catmull-Clark subdivision 
surfaces [2], but it can be easily extended to work for 
any subdivision surface that has an exact evaluation 
method for its limit surface.

2・ Previous Work

2.1. Catmull-Clark Subdivision Surfaces
Given a control mesh, a Catmull-Clark subdivision 

surface (CCSS) is generated by iteratively refining 
(s니bdividing) the control mesh [2] to form new control 
meshes. The s니bdividing process consists of defining 
new vertices (face points, edge points and vertex points) 
and connecting the new vertices to form new edges and 
faces of a new control mesh. A CCSS is the limit 
surface of a sequence of refined control meshes. The 
limit surface is called a subdivision surface because the 
mesh refining process is a generalization of the uniform 
B-spline surface subdivision technique. The valence of 
a mesh vertex is the number of mesh edges adjacent to 
the vertex. A mesh vertex is called an extra-ordinary 
vertex if its valence is different from four. A mesh face 
with an extra-ordinary vertex is called an extra­
ordinary face. The valance of an extra-ordinary face is 
the valence of its extra-ordinary vertex. Given an extra­
ordinary face, if the valence of its extra-ordinary vertex 
is 77, then the surfoce patch corresponding to this extra­
ordinary face is influenced by 2” + 8 control vertices. 
Recent work [4, 5, 6, 7] shows that any point in the 

limit surface of a CCSS can be exactly and directly 
evaluated from its 2〃 + 8 control points. Hence control 
mesh subdivision is not absolutely necessary for the 
rendering of a CCSS.

2.2. Adaptive Tessellation
A number of adaptive tessellation methods for 

subdivision surfaces have been proposed [3,9,10,11, 
14,15]. Most of them are mesh refinement based, i.e., 
approximating the limit surface by adaptively refining 
the control mesh. This approach requires the assignment 
of a subdivision depth to each region of the surface 
first. In [3], a subdivision depth is calculated for each 
patch of the given Catmull-Clark surface with respect 
to a given error tolerance & In [9], a s니bdivision depth 
is estimated for each vertex of the given Catmull-Clark 
surface by considering factors such as curvature, 
visibility, membership to the silhouette, and projected 
size of the patch. The approach used in [3] is error 
controllable. An error controllable approach for Loop 
surface is proposed in [11], which c시culates a subdivision 
depth for each patch of a Loop surface by estimating 
the distance between two bounding linear functions for 
each component of the 3D representation.

Several other adaptive tessellation schemes have been 
presented as well [15,14,10], In [10], two methods of 
adaptive tessellation for triangular meshes are proposed. 
The adaptive tessellation process for each patch is 
based on angles between its normal and normals of 
adjacent faces. A set of new error metrics tailored to 
the particular needs of surfaces with sharp creases is 
introduced in [14].

In addition to various adaptive tessellation schemes, 
there are also applications of these techniques. D. Rose 
et al. used adaptive tessellation method to render terrain 
[18] and K. Muller et al. combined ray tracing with 
adaptive subdivision 이나T可ces to generate some realistic 
scenes [13], Adaptive tessellation is such an important 
technique that an API has been designed for its 응eneral 
usage [17], Actually hardware implementation of this 
technic” has been reported recently as well [12].

A problem with the mesh-refinement-based, adaptive 
tessellation techniques is the so called gap-prevention 
requirement. Because the number of new vertices 
generated on each boundary of the control mesh depends 
on the subdivision depth, gaps (or, cracks) could occur 
between the control meshes of adjacent patches if these 
patches are assigned different subdivision depths. Hence, 
each mesh-refinement-based adaptive tessellation method 
needs some special mechanism to eliminate gaps. This 
is 니sually done by performing additional subdivision or 
splitting steps on the patch with lower subdivision depth. 
As a result, many unnecessaiy polygons are generated in 
the tessellation process. In this paper, we will adaptively 
tessellate a subdivision surface by taking points from 
the limit s니!'包ce to form an inscribing polyhedron of 
the limit surface, instead of refining the control mesh.
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Our method simplifies the process of gap detecting and 
elimination. It does not need to perform extra or unne­
cessary evaluations either.

2.3. Evaluation of a CCSS Patch
Several approaches [4,5,6,7] have been presented for 

exact evaluation of an extraordinary patch at any 
parameter point (u,v). In this paper, we will follow the 
parametrization technique presented in [7], because this 
method is numerically stable, employs less eigen basis 
functions, and can be used for the evahiation of 3D 
position and normal vector of any point in the limit 
surface exactly and explicitly. Some most related 
res니Its of [7] are briefly summarized below.

Every point in the parameter space of a regular or 
extra-ordinary patch can be exactly and explicitly 
evaluated as follows:

S(이, v) = (1)
丿=o

where n is the valance of the extraordinary patch, PF is a 
vector containing the 16 B-spline power basis functions. 
4(0 <j < n + 5) are eigenvalues of the Catmull-Clark 
subdivision matrix and their values can be found in [7]. 
m and b can be exactly evaluated from u and v [7]. K 
and Mbj are constant matrices and their values can be 
found in [7]. G is the vector of control points (See [7] 
for their labeling).

One can compute the derivatives of S(%v) to any 
order simply by differentiating W(u,v) in Eq. (1) 
accordingly. For example,

?S(〃,v) = 
OU

(2)

With the explicit expression of S(*,u) and its partial 
derivatives, one can easily get the limit point of an 
extraordinary vertex in a general Catmull Clark subdivision 
surface:

S(0,0) = [l,0,0,0,40]W”+「G (3)

and the first derivatives:

9=[0丄0,0,40].场2&

Q = [0,0,l,0,10]・MuG

where Du and Dv are the direction vectors of ―7

and , respectively. The normal vector at (0,0) is 
dv

the cross product of Du and D*

3. Basic Idea

3.1. Inscribed Approximation
One way to approximate a curve (surface) is to use 

its control polygon (mesh) as the approximating poly-

• 9
厂

(a) Circumscribed

Fig. 1. Inscribed and Circumscribed Approximation.

line (polyhedron). For instance, in Fig. 1(a), at the top 
are a cubic Bezier curve and its control polygon. For a 
better approximation, we can refine the control polygon 
using midpoint subdivision. The solid polyline at the 
bottom of Fig. 3(a) is the approximating control polygon 
after one refinement. This method relies on performing 
iterative refinement of the control polygon or control 
mesh to approximate the limit curve or surface. 
Because this method approximates the limit shape from 
control polygon or control mesh "outside” the limit shape, 
we call this method circumscribed approximation.

Another possible method is inscribed approximation. 
Instead of approximating the limit curve (surface) by 
performing subdivision on its control polygon (mesh), 
one can approximate the limit c니rve (surfoce) by 
inscribed polygons (polyhedra) whose vertices are taken 
from the limit curve (surface) directly. The easiest 
approach to get vertices of the inscribed polygons 
(polyhedra) is to perform uniform midpoint subdivision 
on the parameter space and use the evaluated vertices 
of the resulting subsegments (subpatches) as vertices of 
the inscribed polylines (polyhedra). For instance, in 
Fig. 3(b), at the top are a cubic Bezier curve and its 
approximating polygon with vertices evaluated at 
parameter points 0, 1/2 and 1. Similarly, the solid polygon 
at the bottom of Fig. 3(b) is an approximating polygon 
with vertices evaluated at five parameter points.

Because inscribed approximation uses points directly 
located on the limit curve or surface, in most cases, it has 
faster convergent rate than the circumscribed approxi­
mation. As one can see clearly from Fig. 3 that the 
inscribing polygon at the bottom of Fig. 3(b) is closer 
to the limit curve than the circumscribing polygon 
shown at the bottom of Fig. 3(a) even though the 
inscribing polygon actually has less segments than the 
circumscribing polygon.

However, the problem with both approaches is that, 
with uniform subdivision, no matter it is performed on 
the control mesh or the parameter space, one wo니Id get 
니rmecessarily small and dense polygons for surface 
patches that are already flat enough and, consequently, 
slow down the rendering process. Ib speed up the rendering 
process, a flat surface patch should not be tessellated as 
densely as a surface patch with big curvature. The adaptive 
tessellation process of a surface patch sho니Id be performed 
based on the flatness of the patch. This leads to our 
adaptive inscribed approximation.



142 International Journal of CAD/CAM Vol. 6, No. 1, pp. 139〜148

3.2. Adaptive Inscribed Approximation
For a patch of 5(w,v) defined on Ui < u < u2 and 

V] < v < v2, we try to approximate it with the quadrilateral 
formed by its four vertices Vx =S(uhVi).匕=$(以2,"), 
V3 = 5(w2,v2) and = 5(wi,v2)- If the distance (to be 
defined below) between the patch and its corres­
ponding quadrilateral is small enough (to be defined 
below), then the patch is considered flat enough and 
will be (for now) replaced with the corresponding 
quadrilateral in the tessellation process. Otherwise, we 
perform a midpoint subdivision on the parameter space 
by setting = (허i + w2)/2 and Vi2 = (巧 + 巧)/2 to get
four subpatches: S([wi, ul2] x IV1M2]), S([u12, 키2] x [】% 

V12]), s’(商2,妇 x [v/2,v2]), S([wb W12] X [v12,v2]) and 
repeat the flatness testing process on each of the 
subpatches. The process is recursively repeated until the 
distance between all the subpatches and their corres­
ponding quadrilaterals are small enough. The vertices of 
the resulting subpatches are then used as vertices of the 
inscribed polyhedron of the limit surface. For instance, if 
the four rectangles in Fig. 2(a) are the parameter spaces of 
four adjacent patches of 5(w,v), and if the rectangles 
shown in Fig. 2(b) are the parameter spaces of the 
resulting subpatches when the above flatness testin음 

process stops, then the limit surface will be eval니ated at 
the points marked with small s이id circles to form vertices 
of the inscribing polyhedron of the limit surface.

In the above flatness testing process, to measure the 
difference between a patch (or subpatch) and its 
corresponding quadrilateral, we need to parametrize the 
quadrilateral as well. The quadrilateral can be parame­
trized as follows:

〜 、v?-v< u^-u Tr u~u} T A

V2-V^U2-UX "2 一"1 7

+ H(쓰LX+ 으二쓰 用

V2-VCU2~U\ U2-U} ) (4)
where U\ <u<u2, <v<v2. The difference between
the patch (or subpatch) and the corresponding quadrilateral 
at (w,v) is defined as

4/(u,v) = ||2(m,v)-S(m,v)||2=(0(m,v)-S'(m,v))

•(2(M,v)-S(w,v))r (5)

where ||・|| is the second norm and AT is the transpose 
of A. The distance between the patch (or subpatch) and

Fig. 2. Basic idea of the construction of an inscribed polyhedron.

the corresponding quadrilateral is the maximum of all 
the differences:

Z) = max{ J頌云训("/V)e [""J 시”,比]}

To measure the distance between a patch (or s니bpatch) 
and the corresponding quadrilateral, we only need to 
meas니re the norms of all local minima and maxima of 
d(u,v). Note that Q(u,v) and 5(w,v) are both C1- 
continuo니s, and d(*), d(y，and d(V^) are equal
to 0. Therefore, by Mean Value Theorem, the local 
minima and maxima m니st lie either inside 허2] x 
[卩1,卩2] or on the four bo니ndary curves. In other words, 
they must satisfy at least one of the following three 
conditions:

dd(u,v)_G 
du

0么쓰史 0

or v=v2 u=U\ or u=u2

u}<u<u2 V]<V<V2

dd(u,v) _
du

dd(u,v)_Q
dv

Xw,v)e(wI,w2)x(v!,v2)
(6)

For a patch (or subpatch) that is not adjacent to an 
extraordinary point (ie,(的,*1) ! = (0,0)), m is fixed 
and known [7]. Hence Eq. (6) can be solved explicitly. 
With the valid solutions, we can find the difference for 
each of them 니sing Eq. (5). S니ppose the one with the 
biggest difference is (z/,v). Then (w,v) is also the 
point with the biggest distance between the patch (or 
s니bpatch) and its corresponding quadrilateral. We 
consider the patch (or subpatch) to be flat enough if

D=Jd(u,v)<£： (7)

where £ is a given error tolerance. In such a case, the 
patch (or subpatch) is replaced with the corresponding 
quadrilateral in the tessellation process. If a patch (or 
subpatch) is not flat enough yet, i.e., if Eq. (7) does not 
hold, we perform a midpoint subdivision on the patch 
(or subpatch) to get four new subpatches and repeat the 
flatness testing process for each of the new subpatches. 
This process is recursively repeated until all the 
subpatches satisfy Eq. (7).

For a patch (or subpatch) that is adjacent to an 
extraordinary point (i.e.(疆“)=(0,0) in Eq. (6)), m is 
not fixed and m tends to infinity (see Fig. 3). As a 
res니It, Eq. (6) can not be solved explicitly. One way to 
resolve this problem is to use nonlinear n나merical 
method to solve these equations. But numerical approach 
cannot guarantee the error is less than ^-everywhere. 
For precise error control, a better choice is needed. In 
the following, an alternative method is given for that 
purpose.

Eq. (3) shows that 5(w,v) and 0") both converge to 
5(0,0) when (w,v)->(0,0). Hence, for any given error t이e- 
rance & there exists an integer mE such that if m 
then the distance between S(以"and 5(0,0) is smaller 
than s/2 for any (w,v) e [0,l/2m] x [0,l/2w], and so is the 
distance between g(w,v) and 5(0,0). Consequently,
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m=l

m=2

m=3 
氏----------------------------------------

하 — Extra-ordinary subpatch 
—Extra—ordinary point

Fig. 3. Partitioning of the unit square [7].

when (w,v) e [0,l/2m] x [0,l/2m], the distance between 
5(w,v) and Q(u,v) is smaller than s. The value of 〃焰 in 
most of the cases, is a relatively small number and can 
be explicitly calc니lated. In next s니bsection, we will 
show how to calculate m£.

For other regions of the unit square with [logi^z/?] 
<m<m£ (see Fig. 3), eq. (6) can be used directly to 
find the difference between 5(w,v) and Q(u,v) for any 
fixed m e min([logi/2W2],时).Therefore, by combining 
all these differences, we have the distance between the 
given extra-ordinary patch (or subpatch) and the 
corresponding q니adrilateraL If this distance is smaller 
than & we consider the given extra-ordinary patch (or 
subpatch) to be flat, and use the corresponding q니ad- 
rilateral to replace the extra-ordinaiy patch (or subpatch) 
in the tessellation process. Otherwise, repeatedly 
subdivide the patch (or subpatch) and perform flatness 
testing on the resulting subpatches until all the sub­
patches satisfy Eq. (7).

3.3 Calculating ms
For a given 0, an integer ks will first be computed 

so that if k is bigger than then the subpatch of S(以" 

with 0 < z/, v < 1/2" is contained in a sphere with center 
5(0,0) and diameter ^(called an ^--sphere). A subpatch 
is contained in an ^sphere if all points of the s니bpatch 
are e/2 away from 5(0,0).

To find s니ch k£, we need a few properties from [7]. 
Recall that an extra-ordinary patch 5(w,v) can be expre-

n+5
ssed as S(払")= (히,")"& where ①妁 are eigen

7 = 0
basis functions defined in [7] and G is the vector of 
control points of S. The eigen basis functions satisfy 
the scaling relation [4, 7], i.e.,(1加("/2七 卩/2*) = 시'① 

(u,v) for any positive integer k, where 2,- are eigen 
values of the Catmull-Clark subdivision matrix [7]. The 
eigen val니es are indexed so that 1 = &刊 >22 > 几 > 0, 
where 0 < z < n + 5 and i^n + 1. Also recall that ①如 

(0,0) = 0 when j 그5 + 1, and ①由汁血摂少 is a constant 
vector, its value is independent of (w,v) [7]. Hence, 
(Qei(",u)-①m+i (心，))'Gr = 0 for any (w,v) and 
v') where r g {x,y^} and Gr is the x-, y- or z-component 
of G

Hence for any 1/2 < w < 1 or 1/2 < v < 1, and for any 
k we have

‘分)_$(0,0)|=|》冒㈤<%(",v)_<%(0,0)). 이 

引%’/(")•이〈，苟吼(").이

Similarly, the three conditions in Eqs. (6) can be used 
to find the maxima of ①毎(허；v) - Gr for any j. Note that 
because here (z/,v)任[0,1/2] x [0,1/2], the corresponding 
m is equal to 1 (See figure 3). Hence we can easily find 
the maximum in its domain {(w,v)|l/2 <u<\ or 1/ 
2 < v< 1}. Let the maximum of ①妁(")-Gr beFrj and 
Fr =旨和+Then for any 0 we have \Sr(u/2k. v2*)- 
Sr(0,0)|< M Therefore if (A^)2 + (2^)2 + (2A2FZ)2 
< 02)2, we have ||S("/2*, v/2^) - S(0,0)|< s/2. If we define 

ks as follows: k£=\ logz — § - , then it is easy
L 形+号+形」

to see that when k>ks. the subpatch 5(w,v) with 
(払v)任[0,1/2勺 x [0,1/2勺 is inside an 务sphere whose 
center is 5(0,0).

In addition, S(0,0) is a fixed point and has an explicit 
expression for any patch (see eq. 3), and Q(u,v) also 
has an explicit parametrization (See eq. (4)). Hence, 
similarly, by using the method of Eqs. (6), it is easy to 
find an integer k£, such that for any given e> 0, when 
k>k£, we have \\Q(u,v) - 5(0,0)||< s/2. e where (z/,v) e 
[0,1/2*] x [0,1/2气 Once we have^^ and kE, simply set 
m£ as the maximum of k£ and ke. With this it is 
easy to see that when m > mE, we have ||5(w,v)- 
2(w,v)||< & where (w,v) g [0,1/2*] x [0,1/2*]

4. Crack Elimination

Due to the fact that adjacent patches might be appro­
ximated by quadrilaterals corresponding to subpatches 
from different levels of the midpoint subdivision process, 
cracks could occur between adjacent patches. For 
instance, in Fig. 4, the left patch A\A2A5A(i is approxi­
mated by one quadrilateral but the right patch is 
approximated by 7 quadrilaterals. Consider the boundary 
shared by the left patch and the right patch. On the left 
side, that boundary is a line segment defined by two 
vertices : A2 and A5. But on the right side, the boundary 
is a polyline defined by knar vertices : A2, C4, B4, and 
A5. They would not coincide unless C4 and B4 lie on 
the line segment defined by A2 and A5. But that usually 
is not the case. Hence, cracks would appear between 
the left patch and the right patch.

Fortunately Cracks can be eliminated simply by 
replacing each boundary of a patch or subpatch with 
the one that contains all the evaluated points for that 
boundary. For example, in Fig. 4, all the dashed lines 
should be replaced with the corresponding polylines. In 
particular, boundary A2A5 of patch sho니Id be
replaced with the polyline A^C^B^As. As a result, polygon 
711^2^5^6 is replaced with polygon /七거?。%斗셔6 in the
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tessellation process. For rendering purpose this is fine 
because graphics systems like OpenGL can handle 
polygons with non-co-planar vertices and polygons with 
any number of sides. However, it should be pointed out 
that through a simple zigzag technique, triangulation of 
those polygons is actually a simple and very fest process.

A potential problem with this process is the new 
polygons generated by the crack elimination algorithm 
might not satisfy the flatness requirement. To ensure 
the flatness requirement is satisfied everywhere when 
the above crack elimination method is used, we need to 
change the test condition in Eq. (7) to the following 
one:

v)+< £ (8)

where (zi,v) and (w,v) are solutions of Eq. (6) and 
they satisfy the following conditions:

• Among all the solutions of Eq. (6) that are located 
on one side of 0"), i.e. solutions that satisfy

> 0, d(u,v) is the biggest. If there does not 
exist any solution such that Q(u,v) - S(u. - 
丫3)x (“2 — J%)) > 0, then d(u,v) is 응et to 0;

• Among all the solutions of Eq. (6) that are located 
on the other side of Q(u,v), i.e. solutions that satisfy 
Q(u,v) < 0, d{u,v) is the biggest. If there does not 
exist any solution such that Q(u,v) - S(u,- 
丫3)x (J% - 丫가)) < 0, then d(u,v) is set to 0.

From the definition of (w,v) and (z7,v), we can see 
that satisfying Eq. (8) means that the patch being tested 
is located between two quadrilaterals that are s away.

Note that all the evaluated points lie on the limit 
surface. Hence, for instance, in Fig. 4, points 4, G,饱 

and A5 of patch 必섀招匹 are also points of patch 
/41/2，4&서6・ With the new test condition in Eq. (8), we 
know that a patch or subpatch is flat enough if it is 
located between two quadrilaterals that are s away. 
Because boundary points A2, G, 84 and A5 are on the 
limit surface, they must be located between two 
quadrilaterals that are s away. So is the polygon 
A]A2C4B4A5A6. Now the patch (or subpatch) and its 
approximating polygon are both located inside two 
quadrilaterals that are s away. Hence the overall error 
between the patch (or subpatch) and its approximating 
polygon is guaranteed to be smaller than &

In previous methods for adaptive tessellation of 
s니bdivision s니rf代ces [3,9,10,14], the most diffic니It part is 
crack prevention. Yet in our method, this part becomes 
the simplest part to handle and implement. The 
resulting surface is error controllable and guaranteed to 
be crack free.

5. Degree of Flatness

Just like numerical errors have two different settings, 
the flatness of a patch, which can be viewed as a 
numerical error from the approximation point of view, 
has two different aspects as well, depending on if the 
flatness is considered in the absolute sense or relative 
sense. The flatness of a patch is called the absolute 
flatness (AF) if the patch is not transformed in any 
way. In that case, the value of s in Eqs. (7) and (8) is 
set to whatever precision the flatness of the patch is 
supposed to meet. AF sho니Id be considered for 
operations that work on physical size of an object such 
as machining or prototyping.

For operations that do not work on the physical size 
of an object, such as the rendering process, we need a 
flatness that does not depends on the physical size of a 
patch. Such a flatness m니st be Affine transformation 
invariant and be a constant for any transformed version 
of the patch. S 니 ch a flatness is called the relative flatness 
of the patch. More specifically, if Q is the corres­
ponding q나adrilateral of patch S, the relative flatness 
(RF) of S with respect to Q is defined as follows:

max{Z)1,£)2)

where d is the maximal distance from S to Q, and D、 
D2 are lengths of the diagonal lines of Q. It is easy to 
see that RF defined this way is Affine transformation 
invariant. Note that when D\ and Z)2 are fixed, smaller 
RF means smaller d. Hence, RF indeed measures the 
flatness of a patch. The difference between RF and AF 
is that RF measures the flatness of a patch in a global 
sense while AF measures flatness of a patch in a local 
sense. Therefore, RF is more suitable for operations 
that have data sets of various sizes but with a constant 
size display area such as the rendering process. Using 
RF is also good for adaptive tessellation process 
because it has the advantage of keeping the number of 
polygons low in the tessellation process.

6. Algorithms of Adaptive Tessellation

In this section, we discuss the important steps of the 
adaptive tessellation process and present the correspon­
ding algorithms.

6.1. Global Index ID
Currently, all the subdivision surface parametrization 

and evaluation techniques are patch based [4,6,7].
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Hence, no matter which method is used in the adaptive 
tessellation process, a patch cannot see vertices 
evaluated by other patches from its own (local) structure 
even though the vertices are on its own bo니ndary. For 
example, in Fig. 4, vertices C4 and B4 are on the shared 
boundary of patches and 幺以必財^ But
patch」402幺5，46 can not see these vertices from its own 
structure because these vertices are not evaluated by this 
patch. To make adjacent patches visible to each other 
and to make subsequent crack elimination work easier, 
a global index ID is assigned to each evaluated vertex 
such that

• all the ev이uated vertices with the same 3D position 
have the same index ID;

• the index ID's are sorted in v and then in u, i.e., if
then IDX IDp unless ID. or ID} has been 

니sed in previous patch evahiation.
With a global index ID. it is easy to do crack 

prevention even with a patch based approach. Actually, 
subsequent processing can all be done with a patch 
based approach and still performed efficiently. For 
example, in Fig. 4, patch can see both C4
and B4 even though they are not evaluated by this 
patch. In the subsequent tessellating process, the patch 
simply output all the marked vertices on its b。니ndary 
that it can see to form a polygon for the tessellation 
purpose, i.e.,

6.2. Adaptive Marking
The purpose of adaptive marking is to mark those 

points in uv space where the limit surface sho니Id be 
evaluated. With the help of the global index ID. this 
step can be done on an individual patch basis. Initially, 
all (w,v) points are marked white. If surface evaluation 
should be performed at a point and the res니Iting vertex 
is needed in the tessellation process, then that point is 
marked in black. This process can be easily imple­
mented as a recursive function. The pse니do code for 
this step is given b이ow.

AdaptiveMarking(P. %, %, vt, v2)
1. Evaluate^ W], w2, v2)；

2. AssignGlobalID(P, %, u2, Vj, v2);
3. if (FlatEnough(P, %, u2, v2)) MarkBlack(P,

"1, "2, v1? v2);
4. else Un = (uj + u2)/2; V12 =(Vi + v2)/2;
5. AdaptiveMarking(P, %, u12, Vi, v/2)；

6. AdaptiveMarking(P, w!2, 以2, v；2);
7. AdaptiveMarking(P,为由 w2, v!2, v2);
8. AdaptiveMarking(P, %, un,巧2, %)；

This routine adaptively marks points in the parameter 
space of patch P. Function 'Evaluate' eval나ates limit 
surface at the four comers of patch or subpatch P 
defined on [wi,z/2] x [vi,v2]- Function「FlatEno니용h' uses 
the method given in section 3 and Eq. (7) to tell if a 
patch or s니bpatch is flat enough. Function 'MarkBlack' 
marks the four comers of patch or subpatch P defined 

on [w],i/2] x pii씨 in black. All the marked comer 
points will be used in the tessellation process.

6.3. Adaptive Tessellation of a Single Patch
The purpose of this step is to tessellate the limit 

surface with as few polygons as possible, while preven­
ting the occurrence of any cracks. Note that the limit 
surface will be evaluated only at the points marked in 
black, and the resulting vertices are the only vertices 
that will be used in the tessellation process. To avoid 
cracks, each marked points m니st be tessellated properly. 
Hence special care must be taken on adjacent patches 
or subpatches. With the help of adaptive marking, this 
process can easily be implemented as a recursive function 
as well. A pseudo code for this step is given below.

AdaptiveTessellation (R %, vb v2)
1. if (NoMarkedPointInside{P, 히(2, 巧, v2))

TessellatePolygon(P, %, 约, 皿 】시;

2. else U12 = (ui + u2)/2; V]2 =(Vi + v2)/2;
3. AdaptiveTessellation (R u}, u12, V72)；

4. AdaptiveTessellation (R w]2, "2,的,v72)；

5. AdaptiveTessellation (R 熨⑵ w2, Vi2, v2)；

6. AdaptiveTess이1诵아t (R u!2, vi2, V2)；

This routine adaptively tessellates marked points in 
patch or subpatch P. Function tNoMarkedPointInside, 
tests if none of the points inside [wi,w2] x [vi,V2], 
excluding the bo니ndary points, are marked. If all the 
interior points are in white (i.e. not marked), it returns 
TRUE. Function tTessellatePolygon, is defined as follows.

TessellatePolygon(P, %, u2, vb v2)
1. B^gzM(TessellationModel);
2. Output all the marked points between:
3. (z/i,vi) 9(3i)；

4. (以2,巧) 分 (키2,均);

5. ("2,巧)9(W1,V2)；

6. (Wi,v2) ("iM)；

7. EndQ;

6.4. Adaptive Tessellation of a CCSS
The overall algorithm for tessellating a general CCSS 

is given below. The algorithm takes the control mesh of 
the surface as input.

CCSSAdaptiveTessellation(Mesh M)
1. for each face P in M
2. AdaptiveMarking(P. %, vb v2);
3. for each face P in M
4. AdaptiveTessellation(P. w2, vi, v2);

7. Implementation and Test Results

The proposed approach has been implemented in 
C++ using OpenGL as the supporting graphics system 
on the Windows platform. Quite a few examples have 
been tested with the method described here. All of 
these examples have extra-ordinary points in the given 
meshes. Some of the tested res니ts are shown in Figs.
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(d) Adaptive(b) Adaptive (c) Adaptive(a) Uniform

(g) Adaptive(f) Uniform(e) Triangulated (h) Adaptive

(m) Adaptive (n) Adaptive (o) Adaptive (p) Triangulated

Fig. 5. Adaptive tessellation of surfaces with arbitrary topology.

5. For instance, Figs. 5(f) is generated using uniform 
subdivision, while Figs. 5(g), 5(h), 5(i) are tessellated 
with the adaptive technique presented in this paper, and 
Fig. 5(j) is the triangulated result of Fig. 5(i). Also Fig. 
5(e) and Fig. 5(p) are the triangulated results of Fig. 
5(d) and Fig. 5(o), respectively. From Fig. 5 we can see 

that all the adaptively tessellated CCSS's indeed signi­
ficantly reduce the number of faces in the reciting 
tessellation while satisfying the given error requirement.

From our experiments, we also see that triangulated 
tessellations usually increases the number of polygons 
by at lease 2 times. Hence triangulation will slow down 
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the rendering process while it does not improve accuracy. 
From the view point of rendering, triang니lation is not 
really necessary. But for some special applications, 
meh as Finite Element Analysis, triangulation is indis­
pensable. As mentioned above, performing triangulation 
on the resulting mesh of our adaptive tessellation 
process is straightforward and fast.

The proposed adaptive tessellation method is good 
for models that have large flat or nearly flat regions in 
its limit surface and would save significant amount of 
time in the final rendering process. One main disadvan­
tage of all the current adaptive tessellation methods 
(including the method proposed here) is that they only 
eliminate polygons inside a single patch. They do not 
take the whole surface into consideration. For instance, 
all the flat sides of the rocker arm model in Fig. 5 are 
already flat enough, yet a lot of polygons are still 
generated there.

8. Summary

A surfece-eval니ation-based adaptive tessellation method 
for general Catmull-Clark subdivision s니rf代ces is 
presented. The new method only evaluates those limit 
surface points that are needed in the final rendering 
process. On the other hand, while previous methods 
use a significant amount of effort to prevent the 
occurrence of cracks between adjacent patches, it takes 
almost no effort for the new method to eliminate cracks 
in the resulting inscribing polyhedron of the limit 
surface. Hence the new method is both computation 
efficient and memory efficient.
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