• Title/Summary/Keyword: surface inversion layer

Search Result 117, Processing Time 0.03 seconds

Temperature Variation by Terrain Using Multitemporal TM Band 6 and DEM(With Seoul City Area) (다시기 TM 밴드 6와 DEM을 이용한 지형별 온도변화(서울시 영역을 대상으로))

  • 박민호
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.203-210
    • /
    • 2004
  • The average temperatures by the land cover class, by the elevation extent, by the slope and by the aspect have been calculated using multitemporal Landsat TM band 6 and DEM. For this, the TM band 6 data from October 21, 1985, June 2, 1992, September 1, 1996, May 7, 2000 and the 28.5m x 28.5m grid elevation data of Seoul have been used. From the varying curve of the average land surface temperature by the elevation extent, the presence of the atmospheric inversion phenomenon and the scope of the inversion layer can be inferred. Especially, the average land surface temperature by the aspect can be effective for deciding a road line. For these reasons, it is expected that temperature estimation using remote sensing data shall be effective for the survey of heat damage, environmental temperature monitoring, and urban and environmental Planning usage.

  • PDF

Micrometeorological Characteristics in the Atmospheric Boundary Layer in the Seoul Metropolitan Area during High-Event and Non-event Days

  • Park, Il-Soo;Park, Moon-Soo;Lee, Joonsuk;Jang, Yu Woon
    • Journal of Environmental Science International
    • /
    • v.29 no.12
    • /
    • pp.1223-1237
    • /
    • 2020
  • This study focused on comparing the meteorological conditions in the Atmospheric Boundary Layer (ABL) on high-event days and non-event days in the Seoul Metropolitan Area (SMA). We utilized observed PM10 and meteorological variables at the surface as well as at the upper heights. The results showed that high-event days were consistently associated with lower wind speed, whereas wind direction showed no particular difference between high-event and non-event days with frequent westerlies and northwesterlies for both cases. During high-event days, the temperature was much warmer than the monthly normal values with a sharp increasing trend, and Relative Humidity (RH) was higher than the monthly normal, especially on high-event days in February. During high-event days in spring, a double inversion layer was present at surface and upper heights. This indicates that stability in the multi-layer is an important indicator of higher PM10 concentrations. Net radiation in spring and winter is also closely associated with higher PM10 concentrations. Strong net radiation resulted in large sensible heat, which in turn facilitated a deeper mixing height with diluted PM10 concentrations; in contrast, PM10 concentrations were higher when sensible heat in spring and winter was very low. We also confirmed that convective and friction velocity was higher on non-event days than on high-event days, and this was especially obvious in spring and winter. This indicated that thermal turbulence was dominant in spring, whereas in winter, mechanical turbulence was dominant over the SMA.

Elimination of Hole Traps on Si Wafer using Reoxidation method (REOXIDATION법을 이용한 Si WAFER의 HOLE TRAP의 제거)

  • Hong, Soon-Kwan;Ju, Byeong-Kwon;Kim, Chul-Ju
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.433-435
    • /
    • 1987
  • Thermal reoxidation was carried out to eliminate hole traps at the surface of Si wafer. As the result, the good surface state of wafer was obtained and hole traps were eliminate at the inversion layer. For the evaluation of reoxidation effects. MOS diode was fabricated and its C-Y curve was plotted.

  • PDF

Effect of MWCNTs/PSf support layer on the performance of polyamide reverse osmosis membrane (탄소나노튜브가 첨가된 폴리술폰 지지체가 폴리아미드 역삼투막의 성능에 미치는 영향)

  • Min, Choong-Sik;Kim, Seung-Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.2
    • /
    • pp.127-137
    • /
    • 2020
  • In this study, a MWCNT(multi-wall carbon nanotube) was added to polysulfone(PSf) support layer to improve flux of TFC(thin film composite) RO(reverse osmosis) membrane. Two different kinds of MWCNT were used. Surfaces of some MWCNTs were modified hydrophilically through acid treatment, while those of other MWCNTs were modified through heat treatment to maintain their hydrophobicity. MWCNT/PSf support layer was prepared by adding PSf to the NMP mixed solvent containing 0.1 wt% MWCNTs using a phase inversion method. The surface porosity of the MWCNT/PSf support increased by 42~46% while its surface pore size being maintained. The TFC RO membrane made of MWCNT/PSf support layer showed a 20% flux increase while its salt rejection characteristics is sustained. In addition, the MWCNT/PSf support layer has better mechanical stability than the PSf support layer, there resulting in an increased resistance of flux reduction due to physical pressure.

C-V Characteristics in Nanometer Scale MuGFETs with Considering Quantum Effects (양자 현상을 고려한 나노미터 스케일 MUGFETS의 C-V 특성)

  • Yun, Se-Re-Na;Yu, Chong-Gun;Park, Jong-Tae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.11
    • /
    • pp.1-7
    • /
    • 2008
  • In this work, a two dimensional, self-consistent Poisson-$Schr{\ddot{o}}dinger$ solver has been implemented to study C-V characteristics in nanometer scale MuGFETs with considering quantum effects. The quantum-mechanical effects on gate-channel capacitance for different device dimension and gate configurations of nanometer scale MuGFETs have been analyzed. It has been found that 4he gate-channel capacitance per unit gate area is increased as the device dimension decreases. For different gate configurations, the gate-channel capacitance is decreased with increase of effective gate number. Those resu1ts have been explained by the distribution profile of electron concentration in the silicon surface and inversion capacitance. The length of inversion-layer centroid has been calculated from inversion capacitance with device dimension and gate configurations.

Transient response of a piezoelectric layer with a penny-shaped crack under electromechanical impacts

  • Feng, Wenjie;Li, Yansong;Ren, DeLiang
    • Structural Engineering and Mechanics
    • /
    • v.23 no.2
    • /
    • pp.163-175
    • /
    • 2006
  • In this paper, the dynamic response of a piezoelectric layer with a penny-shaped crack is investigated. The piezoelectric layer is subjected to an axisymmetrical action of both mechanical and electrical impacts. Two kinds of crack surface conditions, i.e., electrically impermeable and electrically permeable, are adopted. Based upon integral transform technique, the crack boundary value problem is reduced to a system of Fredholm integral equations in the Laplace transform domain. By making use of numerical Laplace inversion the time-dependent dynamic stress and electric displacement intensity factors are obtained, and the dynamic energy release rate is further derived. Numerical results are plotted to show the effects of both the piezoelectric layer thickness and the electrical impact loadings on the dynamic fracture behaviors of the crack tips.

Improvement of carrier transport in silicon MOSFETs by using h-BN decorated dielectric

  • Liu, Xiaochi;Hwang, Euyheon;Yoo, Won Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.97-97
    • /
    • 2013
  • We present a comprehensive study on the integration of h-BN with silicon MOSFET. Temperature dependent mobility modeling is used to discern the effects of top-gate dielectric on carrier transport and identify limiting factors of the system. The result indicates that coulomb scattering and surface roughness scattering are the dominant scattering mechanisms for silicon MOSFETs at relatively low temperature. Interposing a layer of h-BN between $SiO_2$ and Si effectively weakens coulomb scattering by separating carriers in the silicon inversion layer from the charged centers as 2-dimensional h-BN is relatively inert and is expected to be free of dangling bonds or surface charge traps owing to the strong, in-plane, ionic bonding of the planar hexagonal lattice structure, thus leading to a significant improvement in mobility relative to undecorated system. Furthermore, the atomically planar surface of h-BN also suppresses surface roughness scattering in this Si MOSFET system, resulting in a monotonously increasing mobility curve along with gate voltage, which is different from the traditional one with a extremum in a certain voltage. Alternatively, high-k dielectrics can lead to enhanced transport properties through dielectric screening. Modeling indicates that we can achieve even higher mobility by using h-BN decorated $HfO_2$ as gate dielectric in silicon MOSFETs instead of h-BN decorated $SiO_2$.

  • PDF

Analysis on the Reliability and Influence Factors of Refraction Traveltime Tomography Depending on Source-receiver Configuration (송수신기 배열에 따른 굴절 주시 역산의 영향 인자 및 신뢰성 분석)

  • Lee, Donguk;Park, Yunhui;Pyun, Sukjoon
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.3
    • /
    • pp.163-175
    • /
    • 2017
  • In land seismic exploration, irregular surface topography and weathering layer in near surface distorts the reflected signals of data. Therefore, typical land seismic data should be compensated for this distortion by static correction. To perform the static correction, near-surface velocity is required, which can be obtained by seismic refraction survey. However, land seismic data is often acquired in a limited form of geometry depending on the equipment availability, accessibility condition, and permission for the survey site. In this situation, refraction analysis should be performed using reflection data because it is impossible to acquire refraction-oriented data due to limited source and receiver geometry. In this study, we aimed to analyze the reliability of the results obtained by refraction traveltime tomography when using reflection data with a limited number of sources and receivers from irregular surface topography. By comparing the inversion result from irregular topography with that from flat surface, we found that the surface topography affects the reliability of the inversion results to some degree. We also found that the number of sources has little effect on the inversion results unless the number of sources are very small. On the other hand, we observed that velocity distortion occurred in the overlapped part of receiver arrays when using a limited number of receivers, and therefore suggested the size of the least overlapping ratio to avoid the velocity distortion. Finally, we performed numerical tests for the model which simulates the surface topography and acquisition geometry of the survey region and verified the reliability analysis of inversion results. We identified reliable areas and suspicious area of the inverted velocity model by applying the analysis results to field data.

ON THE GENERATION OF TEMPERATURE INVERSIONS IN THE UPPER LAYER OF THE OCEAN (해양 표층 수온 역전의 원인)

  • Kang, Yong Q.
    • 한국해양학회지
    • /
    • v.18 no.1
    • /
    • pp.43-48
    • /
    • 1983
  • Oceanic temperature inversions, with unstable stratifications, are frequently founed in the surface layer of a few tens meters in the Japan Sea and the Yellow Sea in Winter. Mechanisms responsible for the generation of temperature inversions include the followings: (1) The nat heat loss at the sea suface requires an upward transport of heat from the interior of the ocean y convection, and this convection leads to the temperature inversions. (2) The downward propagation of the annual variation of the sea surface timperature, with an exponential decrease of amplitude and a linear change of phase with depth, generates the surface inversion layer in winter. (3) The cold water cdvection by Ekman drift, of which magnitude decreases exponentially with depth, generates temperature inversions for the three possible mechanisms mentioned above.

  • PDF

Multi-station joint inversion of receiver function and surface-wave phase velocity data for exploration of deep sedimentary layers (심부 퇴적층 탐사를 위한 수신함수와 표면파 위상속도를 이용한 다측점 자료의 복합 역산)

  • Kurose, Takeshi;Yamanaka, Hiroaki
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.19-28
    • /
    • 2007
  • In this study, we propose a joint inversion method, using genetic algorithms, to estimate an S-wave velocity structure for deep sedimentary layers from receiver functions and surface-wave phase velocity observed at several sites. The method takes layer continuity over a target area into consideration by assuming that each layer has uniform physical properties, especially an S-wave velocity, at all the sites in a target area in order to invert datasets acquired at different sites simultaneously. Numerical experiments with synthetic data indicate that the proposed method is effective in reducing uncertainty in deep structure parameters when modelling only surface-wave dispersion data over a limited period range. We then apply the method to receiver functions derived from earthquake records at one site and two datasets of Rayleigh-wave phase velocity obtained from microtremor array surveys performed in central Tokyo, Japan. The estimated subsurface structure is in good agreement with the results of previous seismic refraction surveys and deep borehole data. We also conclude that the proposed method can provide a more accurate and reliable model than individual inversions of either receiver function data only or surface-wave dispersion data only.