Browse > Article
http://dx.doi.org/10.5322/JESI.2020.29.12.1223

Micrometeorological Characteristics in the Atmospheric Boundary Layer in the Seoul Metropolitan Area during High-Event and Non-event Days  

Park, Il-Soo (Research Center for Atmospheric Environment, Hankuk University of Foreign Studies)
Park, Moon-Soo (Department of Climate and Environment, Sejong University)
Lee, Joonsuk (Research Center for Atmospheric Environment, Hankuk University of Foreign Studies)
Jang, Yu Woon (Department of Environmental Sciences, Hankuk University of Foreign Studies)
Publication Information
Journal of Environmental Science International / v.29, no.12, 2020 , pp. 1223-1237 More about this Journal
Abstract
This study focused on comparing the meteorological conditions in the Atmospheric Boundary Layer (ABL) on high-event days and non-event days in the Seoul Metropolitan Area (SMA). We utilized observed PM10 and meteorological variables at the surface as well as at the upper heights. The results showed that high-event days were consistently associated with lower wind speed, whereas wind direction showed no particular difference between high-event and non-event days with frequent westerlies and northwesterlies for both cases. During high-event days, the temperature was much warmer than the monthly normal values with a sharp increasing trend, and Relative Humidity (RH) was higher than the monthly normal, especially on high-event days in February. During high-event days in spring, a double inversion layer was present at surface and upper heights. This indicates that stability in the multi-layer is an important indicator of higher PM10 concentrations. Net radiation in spring and winter is also closely associated with higher PM10 concentrations. Strong net radiation resulted in large sensible heat, which in turn facilitated a deeper mixing height with diluted PM10 concentrations; in contrast, PM10 concentrations were higher when sensible heat in spring and winter was very low. We also confirmed that convective and friction velocity was higher on non-event days than on high-event days, and this was especially obvious in spring and winter. This indicated that thermal turbulence was dominant in spring, whereas in winter, mechanical turbulence was dominant over the SMA.
Keywords
Seoul Metropolitan Area; High-event; Wind speed; Inversion layer; Turbulence;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Pahlow, M., Kleissl, J., Parlange, M. B., 2005, Atmospheric boundary-layer structure observed during a haze event due to forest-fire smoke, Boundary Layer Meteorol., 114, 53-70.   DOI
2 Park, I. S., Choi, W. J., Lee, T. Y., Lee, S. J., Han, J. S., Kim, C. H., 2005, Simulation of long-range transport of air pollutants over northeast Asia using a comprehensive acid deposition model, Atmos. Environ., 39, 4075-4085.   DOI
3 Park, I. S., Kim, H. K., Song, C. K., Jang, Y. W., Kim, S H., Cho, C. R., Owen, J. S., Kim, C. H., Chung, K. W., Park, M. S., 2019, Meteorological characteristics and assessment of the effect of local emissions during high PM10 concentration in the Seoul metropolitan area, Asian J. Atmos. Environ., 13(2), 117-135.   DOI
4 Park, I. S., Lee, S. J., Kim, C. H., Yoo, C., Lee, Y. H., 2004, Simulating urban-scale air pollutants and their predicting capabilities over the Seoul Metropolitan Area, J. Air Waste Manag. Assoc., 54, 695-710.   DOI
5 Park, I. S., Park, M. S., Jang, Y. W., Kim, H. K., Song, C. K., Owen, J. S., Kim, S. H., Cho, C. R., Kim, C. H., 2020, Impact comparison of synoptic meteorology and nationwide/local emissions on the Seoul Metropolitan Area during high PM multi-event and non-event days, Asian J. Atmos. Environ., 14(3), 263-279.   DOI
6 Park, I. S., Song, C. K., Park, M. S., Kim, B. G., Jang, Y. W., Ha, S. S., Jang, S. H., Chung, K. W., Lee, H. J., Lee, U. J., Kim, S. K., Kim, C. H., 2018, Numerical study on the impact of power plants on primary PM10 concentrations in South Korea, Asian J. Atmos. Environ., 12(3), 255-273.   DOI
7 Park, M. S., 2018, Overview of meteorological surface variables and boundary-layer structures in the Seoul Metropolitan Area during the MAPS-Seoul campaign, Aerosol Air Qual. Res., 18, 2157-2172.   DOI
8 Park, M. S., Joo, S. J., Park, S. U., 2014, Carbon dioxide concentration and flux in an urban residential area in Seoul, Korea, Adv. Atmos. Sci., 31, 1101-1112.   DOI
9 Park, S. U., Lee, I. H., Choe, A., Joo, S. J., 2015, Contributions of the pollutant emission in South Korea to the aerosol concentrations and depositions in Asia, Asia Pac. J. Atmos. Sci., 51, 183-195.   DOI
10 Park, M. S., Park, S. H., Chae, J. H., Choi, M. H., Song, Y., Kang, M., Rho, J. W., 2017, High-resolution urban observation network for user-specific meteorological information service in the Seoul Metropolitan Area, South Korea, Atmos. Meas. Tech., 10, 1575-1594.   DOI
11 Seo, J., Kim, J. Y., Yoon, D., Lee, J. Y., Kim, H., Lim, Y. B., Kim, Y., Jin, H. C., 2017, On the multiday haze in the Asian continental outflow: the important role of synoptic conditions combined with regional and local sources, Atmos. Chem. Phys., 17, 9311-9332.   DOI
12 Tang, G., Zhao, P., Wang, Y., Gao, W., Cheng, M., Xin, J., Li, X., Wang, Y., 2017, Mortality and air pollution in Beijing: the long-term relationship, Atmos. Environ., 150, 238-243.   DOI
13 Song, C., Wu, L., Xie, Y., He, J., Chen, X., Wang, T., Lin,Y., Jin, T., Wang, A., Liu, Y., Dai, Q., Liu, B., Wang,Y. N., Mao, H., 2017, Air pollution in China: status and spatiotemporal variations, Environ. Pollut., 227, 334-347.   DOI
14 Su, T., Li, Z., Kahn, R., 2018, Relationships between the planetary boundary layer height and surface pollutants derived from lidar observations over China: regional pattern and influencing factors, Atmos. Chem. Phys., 18, 15921-15935.   DOI
15 Tang, G., Zhang, J., Zhu, X., Song, T., Munkel, C., Hu, B., Schafer, K., Liu, Z., Zhang, J., Wang, L., Xin, J., Suppan, P., Wang, Y., 2016, Mixing layer height and its implications for air pollution over Beijing, China, Atmos. Chem. Phys., 16, 2459-2475.   DOI
16 Wang, C., Jia, M., Xia, H., Wu, Y., Wei, T., Shang, X., Yang, C., Xue, X., Dou, X., 2019, Relationship analysis of PM2.5 and boundary layer height using an aerosol and turbulence detection lidar, Atmos. Meas. Tech., 12, 3303-3315.   DOI
17 Airkorea, 2019, https://www.airkorea.or.kr/index.
18 Wang, Y., Yao, L., Wang, L., Liu, Z., Ji, D., Tang, G., Zhang, J., Sun, Y., Hu, B. and Xin, J., 2014, Mechanism for the formation of the January 2013 heavy haze pollution episode over central and eastern China, Sci. China Earth Sci., 57, 14-25.   DOI
19 Wei, W., Zhang, H., Wu, B., Huang, Y., Cai, X., Song, Y.,Li, J., 2018, Intermittent turbulence contributes to vertical dispersion of PM2.5 in the north China plain: cases from Tianjin, Atmos. Chem. Phys., 18, 12953-12967.   DOI
20 Zhou, L., Xu, X., Ding, G., Zhou, M., Cheng, X., 2005, Diurnal variations of air pollution and atmospheric boundary layer structure in Beijing during winter 2000/2001, Adv. Atmos. Sci., 22, 126-132.   DOI
21 An, Z., Huang, R. J., Zhang, R., Tie, X., Li, G., Cao, J., Zhou, W., Shi, Z., Han, Y., Gu, Z., Ji, Y., 2019, Severe haze in northern China: a synergy of anthropogenic emissions and atmospheric processes, Proc. Nat. Acad. Sci., 116, 8657-8666.   DOI
22 Barmpadimos, I., Hueglin, C., Keller, J., Henne, S., Prevot, A. S. H., 2011, Influence of meteorology on PM10 trends and variability in Switzerland from 1991 to 2008, Atmos. Chem. Phys., 11, 1813-1835.   DOI
23 CSIRO, 2019, https://www.csiro.au/.
24 Du, C., Liu, S., Yu, X., Li, X., Chen, C., Peng, Y., Dong, Y., Dong, Z., Wang, F., 2013, Urban boundary layer height characteristics and relationship with particulate matter mass concentrations in Xi'an, Central China, Aerosol Air Qual. Res., 13, 1598-1607.   DOI
25 Hooyberghs, J., Mensink, C., Dumont, G., Fierens, F., Brasseur, O., 2005, A Neural network forecast for daily average PM10 concentrations in Belgium, Atmos. Environ., 39, 3279-3289.   DOI
26 Hurley, P. J., 2008, TAPM V4. Part 1: Technical Description, CSIRO Marine and Atmospheric Research Paper No. 25, CSIRO, Victoria, Australia.
27 KMA, 2019, http://www.kma.go.kr/home/index.jsp.
28 Hurley, P. J., Edwards, M., Luhar, A., 2008, TAPM V4. Part 2: Summary of some verification studies, CSIRO Marine and Atmospheric Research Paper No. 26, CSIRO, Victoria, Australia.
29 Jo, H. Y., Kim, C. H., 2013, Identification of long-range transported haze phenomena and their meteorological features over Northeast Asia, J. Appl. Meteorol. Climatol., 52, 1318-1328.   DOI
30 Kim, C. H., Park, S. Y., Kim, Y. J., Chang, L. S., Song, S. K., Moon, Y. S., Song, C. K., 2012, A Numerical study on indicators of long-range transport potential for anthropogenic particulate matters over northeast Asia, Atmospheric Environ., 58, 35-44.   DOI
31 Kwon, T. H., Park, M. S., Yi, C., Choi, Y. J., 2014, Effects of different averaging operators on the urban turbulent fluxes, Atmos. Korean Meteorol. Soc., 24, 197-206.
32 Large, W. G., Mcwilliams, J. C., Doney, S. C., 1994, Oceanic vertical mixing - a review and a model with a nonlocal boundary-layer parameterization, Rev. Geophys., 32, 363-403.   DOI
33 Li, S., Ma, Z., Xiong, X., Christiani, D. C., Wang, Z., Liu, Y., 2016, Satellite and ground observations of severe air pollution episodes in the winter of 2013 in Beijing, China, Aerosol Air Qual. Res., 16, 977-989.   DOI
34 Li, X., Wang, Y., Zhao, H., Hong, Y., Liu, N., Ma, J., 2018, Characteristics of pollutants and boundary layer structure during two haze events in summer and autumn 2014 in Shenyang, Northeast China, Aerosol Air Qual. Res., 18, 386-396.   DOI
35 Oke, T. R., 1982, The energetic basis of the urban heat island, Quart. J. R. Met. Soc., 108, 1-24.   DOI
36 Li, Z., Guo, J., Ding, A., Liao, H., Liu, J., Sun, Y., Zhu, B., 2017, Aerosol and boundary-layer interactions and impact on air quality, Natl. Sci. Rev., 4, 810-833.   DOI
37 Miao, Y., Li, J., Miao, S., Che, H., Wang, Y., Zhang, X., Zhu, R., Liu, S., 2019, Interaction between planetary boundary layer and PM2.5 pollution in megacities in China: a review, Curr. Pollut. Rep., 5, 261-271.   DOI